Studiuj dzięki licznym zasobom udostępnionym na Docsity
Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium
Przygotuj się do egzaminów
Studiuj dzięki licznym zasobom udostępnionym na Docsity
Otrzymaj punkty, aby pobrać
Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium
Społeczność
Odkryj najlepsze uniwersytety w twoim kraju, według użytkowników Docsity
Bezpłatne poradniki
Pobierz bezpłatnie nasze przewodniki na temat technik studiowania, metod panowania nad stresem, wskazówki do przygotowania do prac magisterskich opracowane przez wykładowców Docsity
W notatkach omawiane zostają zagadnienia z materiałoznastwa: obróbka cieplna stopów żelaza.
Typologia: Notatki
1 / 9
keypi.republika.pl/prace/nom/obrobka.htm 21/
Rys.5.27. Schemat grzania indukcyjnego; l � induktor - wzbudnik, .1 -pręt nagrzewany, 3 - linie pola magnetycznego, Iw - prąd we wzbudniku, Ip � prąd w przedmiocie
Czas grzania, niezbędny do osiągnięcia temperatury austenityzacji, zależny jest częstotliwości prądu i mocy generatora. Teoretycznie dla bardzo małych powierzchni i małych głębokości czas grzania może wynosić ułamek sekundy, w praktyce zawiera się w granicach 2 ¸ 20 s.
Ze względu na bardzo duży koszt urządzeń, hartowanie indukcyjne stosuje się w produkcji wielkoseryjnej i masowej. Dla każdego typu przedmiotu wykonuje się specjalny wzbudnik, ściśle dostosowany do kształtu i wymiarów przedmiotu. Podobnie jak przy hartowaniu płomieniowym, również przy hartowaniu indukcyjnym rozróżnia się dwie podstawowe metody hartowania: hartowanie jednoczesne obrotowe oraz hartowanie ciągłe posuwowe lub posuwowo-obrotowe � rys. 5.
Rys. 5.28. Schemat hartowania indukcyjnego ciągłego, posuwowo-obrotowego; l - wzbudnik dwuzwojowy, 2 - natryskiwacz, 3 - przedmiot
Ogólna zasada hartowania indukcyjnego jest podobna do hartowania płomieniowego z tą różnicą, że w miejscu palników umieszczony jest wzbudnik, który bardzo często spełnia rolę natryskiwacza.
W przemyśle największe zastosowanie znalazło hartowanie indukcyjne, a następnie płomieniowe. Inne metody hartowania powierzchniowego jak: kąpielowe, kontaktowe czy elektroniczne, stosowane są sporadycznie.
keypi.republika.pl/prace/nom/obrobka.htm 22/
Cechami charakteryzującymi stal zahartowaną są utwardzalność i hartowność. Pojęcia te są zbieżne, gdyż określają własności stali zahartowanej, które są ściśle od siebie uzależnione.
Przez utwardzalność rozumie się zdolność stali do utwardzania się przy hartowaniu, a określa ją maksymalna twardość mierzona na powierzchni stali, którą uzyskano przy optymalnych parametrach hartowania. Twardość po hartowaniu jest zależna od zawartości węgla w stali. Wyższa zawartość węgla w martenzycie zwiększa twardość stali, ale tylko do zawartości ok. 0,9% C. W stalach nadeutektoidalnych, dla których optymalną temperaturą hartowania jest Ac1+ 30°C, zawartość węgla w martenzycie po hartowaniu jest stała, zmienia się natomiast ilość cementytu, który jednak nie wpływa w sposób istotny na zmianę twardości.
Z kolei przez hartowność rozumie się głębokość na jaką stal da się zahartować. Miarą hartowności jest więc grubość strefy zahartowanej.
Przy hartowaniu przedmiotów stalowych nie następuje zwykle zahartowanie na wskroś, gdyż szybkość chłodzenia jest większa na powierzchni, a mniejsza w rdzeniu. Rozkład szybkości chłodzenia na przekroju okrągłego pręta podczas hartowania przedstawiono w przybliżeniu linią ciągłą na rys. 5.28a. Jeżeli szybkość hartowania w środkowej części pręta będzie mniejsza od krytycznej szybkości hartowania Vkr to pręt nie zahartuje się na wskroś, jego struktura w rdzeniu będzie się składała z perlitu i bainitu, a głębokość strefy zahartowanej będzie równa tylko grubości warstwy zakreskowanej.
Strefa nie zahartowana
Rys. 5.29. Hartowanie pręta stalowego Vkr - krytyczna szybkość chłodzenia. Vp - szybkość chłodzenia powierzchni. Vr - szybkość chłodzenia rdzenia
Na rysunku 5.29 przedstawiono również wykres CTP, na którym naniesiono linie szybkości chłodzenia: powierzchni � Vp i rdzenia - Vr próbki oraz zaznaczono szybkość krytyczną Vkr .Jest oczywiste, że ze zmniejszeniem krytycznej szybkości hartowania wzrasta głębokość warstwy zahartowanej. Tak więc, im mniejsza jest Vkr dla danej stali, tym większa jest jej hartowność. Wartość Vkr jest ściśle związana z szybkością przemiany austenitu w struktury perlityczne, a zatem z położeniem krzywej początku przemiany na wykresie CTP, które z kolei zależne jest od gatunku stali.
Głębokość warstwy zahartowanej zmienia się także zależnie od użytego środka oziębiającego. Jeżeli środek
keypi.republika.pl/prace/nom/obrobka.htm 24/
Rys. 5.31. Krzywe U dla prętów o różnej średnicy: a) stal węglowa o zawartości 0,45% C, b) stal stopowa o zawar lości 0,40% C i 1,0% Cr
Metoda Jominy'ego. Metoda krzywych U jest dość kłopotliwa, gdyż wymaga konania i przebadania wielu próbek. Z tego względu obecnie najczęściej stosowaną metodą oznaczania hartowności stali jest metoda hartowania od czoła (Jminy'ego). Próba ta jest znormalizowana i opisana w normie PN-79/H-04402 polega ona na nagrzaniu próbki o znormalizowanych wymiarach (f 25 mm, długość 100 mm) do temperatury austenityzacji i następnie oziębieniu jej od czoła strumieniem wody. Następnie po obu stronach próbki wzdłuż tworzącej dokonuje się pomiarów twardości metodą Rockwella lub Vickersa. Średnie arytmetyczne kolejnych pomiarów z obu stron próbki nanosi się na wykres przedstawiający zmianę twardości w funkcji odległości od czoła (rys. 5.31). Korzystając z tego wykresu oraz znając twardość struktury półmartenzytycznej dla danej stali, można określić, w jakiej odległości od czoła otrzymamy strukturę półnartenzytyczną. Następnie na podstawie odpowiednich nomogramów uwzględniających ośrodek chłodzący można określić średnicę krytyczną Dp badanej stali. Wykonując szereg prób hartowności j la różnych wytopów tego samego gatunku stali i nanosząc wyniki pomiarów twardości na ten sam wykres, otrzymuje się tzw. pasmo hartowności (rys. 5.
Rys. 5.32 Kształt i wymiary próbki do badania hartowności metodą Jominy'ego; na tle próbki krzywa rozkładu twardości wzdłuż tworzącej
keypi.republika.pl/prace/nom/obrobka.htm 25/
Rys.5.33. Pasmo hartowności dla stali węglowej o zaw. ok. 0,50% C
Hartowanie martenzytyczne jest pierwszym etapem obróbki cieplnej stali konstrukcyjnych. Mała plastyczność i duże naprężenia własne uniemożliwiają bezpośrednie stosowanie stali konstrukcyjnej w takim stanie, jaki otrzymuje się po hartowaniu. Niezbędny jest następny zabieg cieplny - odpuszczanie, który zwiększa plastyczność i ciągliwość, a zmniejsza naprężenia własne. Odpuszczanie jest więc końcowym zabiegiem obróbki cieplnej (ulepszania cieplnego) stali konstrukcyjnej, ustalającym ostatecznie jej własności. Wyjątek stanowi tu jedynie hartowanie bainityczne, po którym odpuszczanie nie jest wymagane.
Odpuszczanie polega na nagrzaniu uprzednio zahartowanej stali do temperatury niższej od temperatury przemiany eutektoidalnej i chłodzeniu do temperatury otoczenia.
Zależnie od stosowanej temperatury rozróżnia się odpuszczanie niskie, średnie i wysokie.
Odpuszczanie niskie przeprowadza się w zakresie temperatury 150-250°C celem usunięcia naprężeń hartowniczych, przy zachowaniu dużej twardości i odporności na ścieranie. Stosuje się głównie do stali narzędziowych.
Odpuszczanie średnie przeprowadza się w zakresie temperatury 250-500°C w celu uzyskania przez stal dużej wytrzymałości i sprężystości. Twardość ulega przy tym dość znacznemu obniżeniu. Tego rodzaju odpuszczaniu poddaje się sprężyny, resory, matryce, części silników, samochodów itp.
Odpuszczanie wysokie przeprowadza się w zakresie temperatury powyżej 500°C i poniżej Ac1. Ma ono na celu m.in. uzyskanie możliwie najwyższej udarności dla danej stali, przy jednoczesnym zwiększeniu stosunku Re do Rm. Stal konstrukcyjna odpuszczona wysoko po hartowaniu uzyskuje strukturę sorbityczną i odznacza się z reguły wyższą granicą plastyczności i wyższym wydłużeniem i przewężeniem niż ta sama stal o strukturze perlitycznej. Podczas wysokiego odpuszczania, poza zmianami strukturalnymi, zachodzi jednocześnie prawie całkowite usunięcie naprężeń powstałych podczas hartowania. Odpuszczanie wysokie stosuje się do większości stali konstrukcyjnych.
Temperaturę i czas odpuszczania dobiera się w zależności od własności, jakie mają być otrzymane.
Schemat zmian własności mechanicznych stali konstrukcyjnych w zależności od temperatury odpuszczania przedstawiony jest na rys. 5.34.
keypi.republika.pl/prace/nom/obrobka.htm 27/
Rys.>5.36. Udamość stali w różnych temperaturach w zależności od szybkości chłodzenia po odpuszczaniu
Kruchość odpuszczania drugiego rodzaju ujawnia się po odpuszczaniu w temperaturze powyżej 500°C w przypadku, gdy po odpuszczaniu przedmiot jest chłodzony powoli, natomiast w razie szybkiego chłodzenia udarność nie zmniejsza się, lecz wzrasta monotonicznie z podwyższaniem temperatury odpuszczania (rys. 5.35). Wzrost szybkości chłodzenia po odpuszczaniu powoduje również przesunięcie progu kruchości w kierunku niższych temperatur (rys. 5.36). Skłonność do kruchości odpuszczania drugiego rodzaju wykazują tylko niektóre konstrukcyjne stale stopowe np. chromowo-manganowe lub chromowo-niklowe, natomiast nie są do niej skłonne np. stale węglowe i stale stopowe z dodatkiem Mo.
Przesycaniem nazywa się operację cieplną polegającą na:
l) nagrzaniu stali do temperatury, w której wydzielona faza przechodzi do roztworu stałego, tj. powyżej temperatury granicznej rozpuszczalności,
wygrzaniu w tej temperaturze,
oziębieniu w celu zatrzymania rozpuszczonego składnika w roztworze przesyconym (rys. 5.37).
Stan przesycony jest nietrwały i stop dąży do przejścia w stan równowagi, co może nastąpić stosunkowo łatwo np. po podgrzaniu. W stanie przesyconym stop ma większą plastyczność, natomiast twardość i wytrzymałość ulegają zmniejszeniu.
Rys. 5.37. Schemat przebiegu obróbki cieplnej polegającej na przesycaniu i starzeniu
Przesycanie stosowane jest np. do stali chromowo-niklowej o strukturze austenitycznej (stale kwasoodporne) lub o dużej zawartości manganu. Stale te nagrzewa się do temperatury ok. 1100°C i
keypi.republika.pl/prace/nom/obrobka.htm 28/
następnie oziębia się w wodzie. Celem tego zabiega jest rozpuszczenie węglików i uzyskanie jednorodnej struktury austenityczne; Obróbka taka zwiększa przede wszystkim odporność na korozję międzykrystaliczną, stali typu 18-8 (18% Cr, 8% Ni). Przesycanie stosuje się również w przypadki; wysokostopowych stali żarowytrzymałych i stali o specjalnych własnościach magnetycznych. Zabieg ten ponadto jest szeroko stosowany do wielu stopów metal: nieżelaznych.
Starzenie polega na nagrzaniu i wytrzymaniu uprzednio przesyconego roztworu w temperaturze znacznie niższej od temperatury granicznej rozpuszczalności w celu wydzielenia o odpowiednim stopniu dyspersji składnika lub składników znajdujących się w nadmiarze w przesyconym roztworze stałym. W przypadku niektórych stopów procesy starzenia zachodzą już w temperaturze otoczenia, co nosi nazwę starzenia naturalnego (samorzutnego). W czasie starzenia zachodzą zmiany strukturalne zbliżające skład stopu do stanu równowagi. Wydzielanie się w czasie starzenia składnika (znajdującego się w przesyconym roztworze stałym) w postaci skupień lub faz o dużej dyspersji powoduje utwardzanie stopu. Z tego względu połączenie zabiegów przesycenia i starzenia nosi nazwę utwardzania wydzieleniowego.
W stalach niskowęglowych przeznaczonych do głębokiego tłoczenia, a także stalach kotłowych starzenie jest niekorzystne, gdyż obniża plastyczność i powoduje kruchość. Zjawisko to występuje silniej w stalach nieuspokojonych, gdyż oprócz węgla w ferrycie rozpuszczony jest także azot, który tworzy z żelazem fazę międzywęzłową Fe 4 N. Szybkie chłodzenie np. od temperatury walcowania powoduje zatrzymanie prawie całej ilości rozpuszczonych składników w ferrycie, które następnie wydzielają się podczas starzenia, zwłaszcza na granicach ziarn. Starzenie może zachodzić już w temperaturze otoczenia, zwłaszcza w ciągu dłuższych okresów i czasu, i powoduje pogorszenie własności plastycznych stali.