Docsity
Docsity

Przygotuj się do egzaminów
Przygotuj się do egzaminów

Studiuj dzięki licznym zasobom udostępnionym na Docsity


Otrzymaj punkty, aby pobrać
Otrzymaj punkty, aby pobrać

Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium


Informacje i wskazówki
Informacje i wskazówki

Oznaczenie gęstości rzeczywistej i pozornej porowatości i nasiąkliwości tworzyw ceramicznych, Laboratoria z Materials Physics

Teoria i praktyka procesów ceramicznych - ćwiczenie

Typologia: Laboratoria

2019/2020

Załadowany 19.08.2020

Karolina_90
Karolina_90 🇵🇱

4.6

(73)

372 dokumenty


Podgląd częściowego tekstu

Pobierz Oznaczenie gęstości rzeczywistej i pozornej porowatości i nasiąkliwości tworzyw ceramicznych i więcej Laboratoria w PDF z Materials Physics tylko na Docsity! Teoria i praktyka procesów ceramicznych – laboratorium Studia Magisterskie Uzupełniające WIMIC AGH Ćwiczenie 1 OZNACZENIE GĘSTOŚCI RZECZYWISTEJ I POZORNEJ, POROWATOŚCI I NASIĄKLIWOŚCI TWORZYW CERAMICZNYCH Zagadnienia do przygotowania: • definicje podstawowych pojęć [1], • metodyka pomiaru [1], • statystyczne opracowanie wyników laboratoryjnych [2]. Zagadnienia poszerzające temat (nieobowiązkowe): • metody pomiaru rozkładu wielkości porów [3]. Literatura: 1. Instrukcja do ćwiczenia 2. Volk, „Statystyka stosowana dla inżynierów, Wyd. N -T, Warszawa 1973 lub inny podręcznik statystyki matematycznej 3. Pampuch, K. Haberko, M. Kordek, „Nauka o procesach ceramicznych”, PWN Warszawa, 1992, rozdz. 3.2.6 Wstęp Tworzywa ceramiczne, w odróżnieniu od typowych materiałów metalicznych, zawierają pory w ilości od części procenta do kilkudziesięciu procent udziału objętościowego (ok. 90%). Znaczna zawartość porów w materiale jest często wynikiem świadomego działania technologa, który dążąc do uzyskania np. lekkich materiałów konstrukcyjnych, izolacji termicznych, materiałów odpornych na wstrząsy cieplne, filtrów ceramicznych, podłoży do katalizatorów i in. opracowuje i optymalizuje technologie wytwarzania materiałów pod kątem otrzymania tworzywa o odpowiednim udziale i wielkości porów. Częściej jednak występowanie porów jest rezultatem trudności technologicznych (wysokie koszty ekonomiczne) w uzyskaniu tworzywa pozbawionego porów. Występujące w materiale pory w znacznym stopniu wpływają na jego właściwości, zwłaszcza mechaniczne, które ulegają obniżeniu wraz ze wzrostem porowatości. Stąd też w przypadku materiałów ceramicznych kontrola gęstości i porowatości jest często bardzo ważnym parametrem kontroli, procesu wytwórczego i charakterystyki gotowego tworzywa. Pełna informacja o porowatości obejmuje nie tylko znajomość całkowitej objętości porów ale także rozkładu wielkości porów, który można określić za pomocą porozymetrii rtęciowej (pory o średnicach od pojedynczych nm do kilkuset mikrometrów) oraz dla porów mniejszych od 1 mikrometra metodą kondensacji kapilarnej. OZNACZENIE GĘSTOŚCI RZECZYWISTEJ Podstawowe definicje Gęstość jest to masa jednostkowej objętości substancji w danej temperaturze wyrażona w kg/m3 (SI) lub g/cm3 (CGS). Gęstość rzeczywista (fizyczna) jest to gęstość materiału litego nie zawierającego porów. W zależności od zastosowanej metody pomiarowej wyróżniamy następujące odmiany gęstości rzeczywistej: • gęstość piknometryczna oznaczona metodą piknometryczną. • gęstość rentgenowska oznaczająca gęstość rzeczywistą materiału wyznaczoną na podstawie znajomości struktury materiału i pomiarów parametrów sieciowych komórki elementarnej metodą dyfrakcji rentgenowskiej. • gęstość helowa wyznaczona na podstawie pomiaru objętości materiału przy użyciu gazowego helu w piknometrze gazowym. Uwagi ogólne Najprostszą metodą pomiaru gęstości rzeczywistej jest metoda piknometryczna. Istotą tej metody jest wyznaczenie masy badanego ciała oraz objętości materiału w postaci sproszkowanej przy użyciu naczynia szklanego o znanej objętości (piknometru) i cieczy o znanej gęstości (najczęściej wody). Rozdrobnienie materiału ma na celu otwarcie porów zamkniętych obecnych w materiale i tym samym umożliwienie penetracji cieczy do wszystkich porów układu. Dlatego materiały pozbawione porów zamkniętych zasadniczo nie wymagają rozdrabniania. Poziom koniecznego rozdrobnienia uzależniony jest od rozmiaru i udziału porów zamkniętych. Normy przewidują rozdrobnienie do stanu charakteryzującego się rozmiarem ziarna mniejszym od 64 μm. Bezkrytyczne zastosowanie tego zalecenia w przypadku spieków posiadających pory zamknięte o wielkościach rzędu pojedynczych mikrometrów może 2 OZNACZENIE NASIĄKLIWOŚCI, GĘSTOŚCI POZORNEJ I POROWATOŚCI Definicje badanych właściwości Gęstość pozorna jest to stosunek masy wysuszonej próbki do jej całkowitej objętości, łącznie z porami. Pojęcie gęstości geometrycznej pojawia się wtedy, gdy gęstość pozorną oznacza się na podstawie geometrycznych wymiarów próbki. Gęstość względna jest to stosunek gęstości pozornej do gęstości rzeczywistej, wyrażony w procentach. Porowatość całkowita jest to stosunek objętości porów otwartych i zamkniętych do całkowitej objętości próbki, wyrażony w procentach. Porowatość otwarta jest to stosunek objętości porów otwartych do całkowitej objętości próbki, wyrażony w procentach. Porowatość zamknięta jest to różnica między porowatością całkowitą i otwartą. Nasiąkliwość jest to stosunek masy wody wchłoniętej przez próbkę do masy próbki w stanie suchym, wyrażony w procentach. Uwagi ogólne Wyznaczanie gęstości jest proste, gdy dane do dyspozycji próbki materiałów mają postać regularnych brył np.: sześcianów, prostopadłościanów, płytek, dysków, pierścieni itp. Jedną z dwu potrzebnych wielkości, a mianowicie objętość, wyznaczamy przez ustalenie wymiarów danej bryły. Drugą wielkość, czyli masę, wyznaczamy przy użyciu wagi o dokładności zależnej od masy próbki. Wspomniany przypadek nie często występuje, chociaż w naszym cyklu ćwiczeniowym pojawi się przy okazji wyznaczania gęstości pozornej wyprasek formowanych metodą prasowania jednoosiowego. Znacznie częściej mamy do czynienia z próbkami o nieregularnych kształtach. W tym przypadku gęstość możemy wyznaczyć w oparciu o prawo Archimedesa, które pozwala na pomiar objętości próbki zanurzonej w cieczy (najczęściej jest to woda) bez odwoływania się do jej rozmiarów geometrycznych. Próbka taka zawieszona na szalce wagi oprócz siły ciężkości doznaje działania siły wyporu, która jest równa ciężarowi cieczy w objętości zanurzonego ciała (albo ciężarowi wypartej przez to ciało cieczy). Metoda ta nazywana jest metodą Archimedesa lub metodą ważenia hydrostatycznego lub wreszcie metodą ważenia w wodzie. Podstawowe etapy tej metody to: nasycanie próbki wodą, oznaczanie jej masy drogą ważenia w powietrzu, a następnie poprzez ważenie w wodzie. Masę próbki suchej wyznaczmy na końcu oznaczenia, jednak w przypadku próbek wytrzymałych mechanicznie można ją wyznaczyć przed nasycaniem wodą. Pierwsze dwa etapy metody umożliwiają pomiar nasiąkliwości próbek materiałów ceramicznych, etap ważenia w wodzie służy pomiarom ich gęstości pozornej i charakterystyce porowatości. Wykonanie oznaczeń Próbki do oznaczenia obejmującego pomiar gęstości pozornej, porowatości całkowitej, porowatości otwartej i nasiąkliwości wycina się z kształtek w taki sposób, aby przynajmniej trzy ściany każdej próbki były świeżymi przełomami. 5 Próbki przeznaczone do badań, po oczyszczeniu z pyłu, wysuszyć do stałej masy i zważyć na wadze analitycznej z dokładnością do 0,0001g w celu oznaczenia masy próbki suchej (ms). Następnie, próbki umieścić w naczyniu do gotowania i stopniowo zalewać wodą destylowaną tak, aby całkowite ich przykrycie warstwą wody o grubości ok. 20 mm nastąpiło po upływie 5 min. Wodę w naczyniu z próbkami ogrzać do stanu łagodnego wrzenia i utrzymywać go przez 0,5 godziny, uzupełniając wodę w miarę jej odparowywania. Próbki wystudzić przenosząc je do wcześniej odpowietrzonej wody destylowanej o temperaturze pokojowej. Innym sposobem nasycania próbek wodą, niewykorzystywanym w ćwiczeniu, jest nasycanie pod próżnią. Przed przystąpieniem do wykonania ważeń za pomocą wagi analitycznej, przewidzianych metodą Archimedesa, należy nad szalką wagi ustawić podstawkę do ważenia w wodzie, a na niej zlewkę z odpowietrzoną wodą destylowaną. Próbkę nasyconą wodą umieścić w koszyczku zawieszonym na haczyku szalki wagi w taki sposób, aby cała próbka była zanurzona w wodzie. Wykonać ważenie w celu oznaczenia masy próbki w wodzie (mw) z dokładnością do 0,0001 g dla badanej serii próbek. Pomiar powtórzyć trzykrotnie. Zważone próbki przechowywać w wodzie. W celu oznaczenia masy próbki nasyconej wodą (mn), każdą próbkę należy wyjąć z wody, usunąć wodę pozostałą na jej powierzchni poprzez wytarcie wilgotnym płótnem i niezwłocznie zważyć z dokładnością do 0,000l g. Ograniczamy w ten sposób odparowanie wody zawartej w porach otwartych badanego materiału. Ważenie wykonać jeden raz. Po zakończeniu pomiarów, badane próbki wysuszyć do stałej masy w temperaturze 110°C. Obliczenia Nasiąkliwość Wartość nasiąkliwości pojedynczej próbki badanego materiału obliczyć według wzoru: 100⋅−= s sn m mmN % (3) gdzie: N - nasiąkliwość [%]; ms - masa próbki suchej [g]; mn - masa próbki nasyconej woda [g]. Obliczyć średnią wartość nasiąkliwości dla serii trzech badanych próbek i przedział ufności . Porowatość otwarta Wartość porowatości otwartej próbki badanego materiału obliczyć ze wzoru: 100⋅ − − = wn sn O mm mmP % (4) gdzie: PO - porowatość otwarta [%]; mw - masa próbki ważonej w wodzie ( średnia z trzech ważeń) [g]; mn - masa próbki nasyconej wodą [g]; 6 ms - masa próbki suchej [g]. Obliczyć średnią wartość porowatości dla serii trzech badanych próbek i przedział ufności. Gęstość pozorna Wartość gęstości pozornej badanej próbki obliczamy na podstawie wielkości wyznaczonych wcześniej według wzoru: c wn s p dmm md ⋅ − = (5) gdzie: dp - gęstość pozorna [g/cm3]; dc - gęstość wody w temperaturze pomiaru (Tabela 1) [g/cm3]; Podać wartość średnią i przedział ufności na poziomie 0,95. Obliczyć gęstości względne, podać średnią wartość gęstości względnej badanego materiału i przedział ufności. Porowatość całkowita Wartość porowatości całkowitej oblicza się na podstawie wyników oznaczeń gęstości rzeczywistej i gęstości pozornej materiału. Z różnicy tych dwóch wielkości można stwierdzić o ile 1 cm3 substancji nieporowatej jest cięższy od 1 cm3 substancji porowatej. Aby wypełnić pory w 1 cm3 danego ciała potrzeba (d - dp ) gramów substancji nieporowatej o gęstości d. Objętość tej ilości substancji nieporowatej otrzymuje się z podzielenia jej masy przez gęstość. Otrzymana wielkość jest suma objętości porów otwartych i zamkniętych. Wyrażona w procentach daje nam porowatość całkowitą: 100⋅ − = d dd P pc % (6) gdzie: Pc - porowatość całkowita [%]; d - gęstość rzeczywista materiału (np.: zmierzona piknometrycznie) [g/cm3]; dp - gęstość pozorna [g/cm3]. Obliczyć błąd pomiaru porowatości całkowitej (metodą różniczki zupełnej). Sprawozdanie Sprawozdanie powinno zawierać następujące informacje: 1. dane dotyczące badanych materiałów; 2. krótki opis metod pomiarowych i parametrów pomiarowych istotnych z punktu widzenia poprawności pomiaru i uzyskiwanej dokładności, wyszczególnienie użytej aparatury; 3. tabelaryczne zestawienie danych wyjściowych i obliczonych pojedynczych wartości zmierzonych właściwości badanych próbek; 7

1 / 8

Toggle sidebar

Dokumenty powiązane