Pobierz Podstawy technologii cyfrowej [ang] i więcej Notatki w PDF z Informatyka w języku angielskim tylko na Docsity! w”. w
ww. 6 ć Ć 6 6 G
Decimal. tó anf yadix
toduh qział method kanie J
(Ale : 207 16 > Ą—2.—vadix of dęshnahon system
Bot 2= 455: 4 > x' 4 ( 453:2> 306)
453:2* FG kT
6:23 88+ 7
KUEZEBKECEMZJE
© (28-2- 26)
(boi]» J/ oo440044),
2
ŚPI Re 340 | (946), *. 00404
(0.64.1- 4,28)
028: Z; 0,560 FX
056: ZĘ - Baa: 3 zy” 4
85, 7) = ds js. EC The ŻE js) © oł ws
1,5 [0722 would go 2) Jpfra 4
ResulF
(We; 41004.10044.004 04
Mox vepve sen tahion CWOF :
BHA : 477
Dedmal ło
Differencial. mełhod
(Av: 305 16 =7 p:2
Mdix w
o 4 1 4 4 9 8 .
270 22 2 8z nt a?
"4 z Epee art -cEplażne se
08 025 05 006w 0,0323
=
5! 5* 5?
046-045 <0 ="_k410
016-005, | 40 % 4:0 | (016), (00404,
046-0405-003540 4 xs4 oaz
00%-00685: (40 % x.0 uwóiók
0,035-0,03425: Gyaiak — %ę' 1
Result: = cy be © and yesdt
10044004 4.004 04 z skad
Mox eyv.
Graażk6 - GL
124 8 46 52 Gr ka 26,50 thę | hahegi fegec i
AUE PekELzE Fhan A i LI n um bóy M =
07-166 -51 (ż0 2 xd-1 A
51 -1ĄMZE | <0 | > y70 | s
51-64 <0 > 30 (307), + (40044004), gr
54-32 =418 z0, > |x5*4 «
15-46 3530 (>.xwU
3-8 5 <o =. je 0 s 4
| 3-40 EMTaanEbrLyEO 1-1 4
3-121 -EA-| elo" | BEDGEM (
14 500 > %4
Any rohx
A)4: 1030022
T mehój (4 iven bspofdalia]
O 00
4 o4
2 40
3 A
Ao pl
O 000
4 004
Ż 040
3
4
5
6
1
O4A |
400
10.
140
14
ło binovy
Ala 2
(Ulęs 4 o
(A 04 00 M 00 KM, oo 40, 40
p-l6
O
4
-
3
4
5
6
Ź
8
8
A
B
c
D
E.
Ę
o 3) jol la, |2)
lalala aa a a al
p I mekod
0000. ak RR 4
| ooo4 "PEPE LZ
b 24 [24 14 (0) zadana
0040 UO WŁ b
|| | 04 00 MA oo 14, 00 1040 q
DOAĄ
0400 pmbeu ue. moji
Olo4 war (5 4 PM
w A umb 4
OO dz. żę alek ke
OLI kia! pt chsose. ; 4
mka Bł ue, git dhosc
4000 M aja p se. 4
4004 (
= —© pz
1040 3 > p
40H = B_£
[l00 [2d] BA 4
V:
AMOĄ 404 440
MĄO
1114
ZERIUWSE
3 Bir OM6" + DOK kam
Ra | cze
|
TS GI
(e
Gonplmejah
(A 40 53%6, 78 Zbtnckn — numbev Ko 3
——
eli «367 = 463,4 (A)»% 46.3,22.8 LE
465, L4
ia,
"egwnł 0 kąd o.
(DRC) BREPEEFECHETE
B|a 400
8] Ą 440404 Opposite.
(Bla =044004,040
(B), = 044004 OdĄ SĄ
Sign mas łudę ©
(c = A10404,014 |
+€ 3 014104041 044
- C= Ą1A40404,014.
Complemenks with sign magnitude
(-c]?55-4.004040400
cJ5S 4,004040404
i
point (OMmmay
* /
TAUTOLOGY A variable is a symbol used to represent a logical quantity. (1, 0) The complement is the inverse of a variable and is indicated by a bar over variable (overbar). [ If A = 1, then Ā = 0 ] [ Ā - "not A" or "A bar" ; sometimes “ A’ “ ; “ ~A “] Literal is a variable or the complement of a variable. Tautology Truth Tables AND ( both must be true ) x y x ∧ y T T T T F F F T F F F F OR ( at least one true) x y x ∨ y T T T T F T F T T F F F NOT ( reverse ) x ~x (NOT x) T F F T IF => THEN ( second one is the result value ) x y x ⇒ y T T T T F F F T T F F T IF AND ONLY IF ( If they re different = False; Both same = True ) x y x ⇔ y T T T T F F F T F F F T T = 1 F = 0 BOOLEAN ALGEBRA TRUE = 1 -> HIGH voltage FALSE = 0 -> LOW voltage [ ^THEY RE THE SAME AS BEFOR^ ] rule (2a) -> The order of taking AND gates is not important BOOLEAN ADDITION A sum term is equal to 1 when one or more of the literals in the term are 1. A sum term is equal to 0 only if each of the literals is 0. BOOLEAN MULTIPLICATION Boolean multiplication == AND operation Product term is equal to 1 only if each of the literals in the term is 1. Product term is equal to 0 when one or more of the literals are 0. The Sum-of-Products (SOP) Form <- When two or more product terms are summed by Boolean addition In an SOP expression a single overbar cannot extend over more than one variable. [ AB + ABC ; ABC + CDE + BCD ] The Standard SOP Form <- is one in which all the variables in the domain appear in each product term in the expression. [ ABCD + ABCD + ABCD ] Converting Product Terms to Standard SOP: A B’ C + A’ B’ + A B C’ D -> 1) A B’ C ( D is missing ) -> A B’ C ( D + D’ ) = A B’ C D + A B’ C D’ 2) A ‘ B’ ( C and D are missing ) -> A’ B’ ( C + C’ ) = A’ B ‘ C + A’ B’ C’ A’ B’ C ( D + D’ ) + A’ B’ C’ ( D + D’ ) = A’ B’ C D + A’ B’ C D’ + A’ B’ C’ D + A’ B’ C’ D’ Result: A B’ C + A’ B’ + A B C’ D -> A B’ C D + A B’ C D’ + A’ B ‘ C + A’ B’ C’ + A’ B’ C D + A’ B’ C D’ + A’ B’ C’ D + A’ B’ C’ D’ + A B C’ D The Product-of-Sums (POS) Form <- Sum of literals; When two or more sum terms are multiplied, the resulting expression is a product-of-sums [ (A + B)(A + B + C) ; (A + B + C)( C + D + E)(B + C + D) ] [ A(A + B + C)(B + C + D) ] In a POS expression, a single overbar cannot extend over more than one variable; however, more than one variable in a term can have an overbar <- A’ + B’ + C’ is okey; but not (A + B + C)’ The Standard POS Form <- ll the variables in the domain appear in each sum term in the expression [ (A + B + C + D)(A + B + C + D)(A + B + C + D) ] Converting a Sum Term to Standard POS (A’ + B + C)(B’ + C + D’)(A + B’ + C’ + D)-> 1) A’ + B + C + DD’ = (A’ + B + C + D)( A’ + B + C + D’) 2) B’ + C + D’ + AA’ = (A + B’ + C + D’ )( A’ + B’ + C + D’ ) Result: (A’ + B + C)(B’ + C + D’)(A + B’ + C’ + D) -> (A’ + B + C + D)( A’ + B + C + D’) (A + B’ + C + D’ )( A’ + B’ + C + D’ ) (A + B’ + C’ + D) 5) F = ABC + ABC’ + AB’C + AB’C’ + AB’C + A’B’C Because A + A = A F = ABC + ABC’ + AB’C + AB’C’ + A’B’C F = m7 + m6 + m5 + m4 + m1 In short notation F(A, B, C) = Σ(1, 4, 5, 6, 7) F’(A, B, C) = Σ(0, 2, 3) The complement of a function expressed as the sum of minterms equal to the sum of minterms missing from the original function. A+BC
Truth table for F
A
POS expression is equal to 0 only if at least one of the sum terms is equal to 0. Simplest SOP or POS Expression <- minimum expression Karnaugh map is an array of cells in which each cell represents a binary value of the input variables. Karnaugh maps can be used for expressions with two, three, four and five variables. The number of cells in a Karnaugh map is equal to the total number of possible input variable combinations. For three variables, the number of cells is 23 = 8. For four variables, the number of cells is 24 = 16.
00 l l
A +AB + ABC | s ||
000 100 110 ć
001 101
010 10 1 i
011
Example
Map the following SOP expression on a Karnaugh map:
BC + AB + ABC + ABCD + ABCD + ABCD
Solution
The SOP expression is obviously not in standard form because each product
term does not have four variables.
BC AB + ABC + ABCD + ABCD + ABCD
0000 1000 1100 1010 0001 IOH1
0001 1001 1101
1000 1010
1001 1011
Map each of the resulting binary values by placing a 1 in the appropriate cell
of the 4l variable Kamaugh map.
Karnaugh Map Simplification of SOP Expressions Grouping the 1s, you can group 1s on the Karnaugh map according to the following rules by enclosing those adjacent cells containing 1s. The goal is to maximize the size of the groups and to minimize the number of groups. A group must contain either 1, 2, 4, 8, or 16 cells, which are all powers of two. In the case of a 3-variable map, 23 = 8 cells is the maximum group. Each cell in a group must be adjacent to one or more cells in that same group. Always include the largest possible number of 1s in a group in accordance with rule 1. Each 1 on the map must be included in at least one group. The 1s already in a group can be included in another group as long as the overlapping groups include noncommon 1s. Example:
Group the 1s in each of the Karnaugh maps in Fig.(5-6).
© c CD cp
AN_ 01 AND 1 AN 0 O 1 IG AN 0 0 1 10
00 1 00 1 1 00 1 1 00 1
m 1 01 1 01 1 1 ! 1 0 ł 1
u 1 1 " U n l 1 '
10 w 1 1 10 1 1 1a 1 1
Fig.(5-6)
Solution:
The groupings are shown in Fig.(5-7). In some cases. there may be more
than one way to group the 1s to form maximum groupings.
© € CD CD
AB 1 ABD _1 ANO 0 10 aB
[© £ |
0
| -U
ee) «Lo
Fig.(5-7)
Determine the minimum product term for each group.
a. For a 3-variable map:
(1) Al-cell group yields a 3-variable product term
(2) A 2-cell group yields a 2-variable product term
(3) A 4-cell group yields a 1-variable term
(4) An 8-cell group yields a value of 1 for the expression