Docsity
Docsity

Przygotuj się do egzaminów
Przygotuj się do egzaminów

Studiuj dzięki licznym zasobom udostępnionym na Docsity


Otrzymaj punkty, aby pobrać
Otrzymaj punkty, aby pobrać

Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium


Informacje i wskazówki
Informacje i wskazówki

Tester sieci LAN - Notatki - Systemy i sieci, Notatki z Informatyka

Informatyka: notatki z zakresu systemów i sieci przedstawiające tester sieci LAN.

Typologia: Notatki

2012/2013

Załadowany 12.04.2013

Norbert_88
Norbert_88 🇵🇱

4.5

(31)

322 dokumenty

Podgląd częściowego tekstu

Pobierz Tester sieci LAN - Notatki - Systemy i sieci i więcej Notatki w PDF z Informatyka tylko na Docsity! Spis treści 1. Cel pracy 4 2. Analiza aktualnego stanu techniki 5 2.1. Rozwój i znaczenie lokalnych sieci komputerowych 5 2.2. Opis sieci LAN 8 1. Organizacje stanowiące standardy 8 a) ANSI 8 b) IEEE 8 c) ISO 8 d) IEC 9 e) IAB 9 f) Model referencyjny OSI 9 2. Warstwy 10 a) Warstwa fizyczna 10 b) Warstwa łącza danych 10 c) Warstwa sieci 10 d) Warstwa transportu 11 e) Warstwa sesji 11 f) Warstwa prezentacji 11 g) Warstwa aplikacji 11 3. Ośrodki transmisji 12 a) Kable miedziane 12 b) Włókna szklane (światłowody) 13 c) Radio 14 d) Mikrofale 14 e) Podczerwień 15 f) Światło lasera 15 4. Topologia sieci 15 a) Topologia magistrali (szynowa) 16 b) Topologia pierścienia 17 c) Topologia gwiazdy 17 d) Topologie złożone 18 5. Metody dostępu do nośnika 18 a) Dostęp do nośnika na zasadzie rywalizacji 18 b) Dostęp do nośnika na zasadzie pierścienia 19 c) Dostęp do nośnika na zasadzie pierścienia w sieciach FDDI 20 d) Dostęp do nośnika na zasadzie priorytetu żądań 20 e) Dostęp do nośnika w komutowanych sieciach LAN 21 f) Rozszerzanie sieci lokalnych 21 g) Rozszerzanie za pomocą światłowodów 22 PAGE 26 PAGE PAGE 26 Praca dyplomowa 6. Protokoły sieciowe 22 a) Protokół Internetu, wersja 4 23 b) Protokóły IPX/SPX Novell 24 c) Pakiet protokołów Apple Talk firmy Apple 25 d) NetBEUI 25 7. Testery okablowania 26 3. Wnioski z analizy stanu techniki 28 4. Opis części praktycznej pracy 29 1. Schematy 29 a) schematy układów 29 b) schematy płytek 30 2. Opis działania 31 3. Instrukcja obsługi 32 5. Wnioski końcowe 33 6. Literatura 34 PAGE 26 PAGE PAGE 26 Praca dyplomowa przeciągu tygodni lub miesięcy systemów, których stworzenie dawniej zabrałoby lata. Systemy komputerowe były zazwyczaj niezależne. Każdy komputer był samowystarczalny i miał wszystkie niezbędne do wykonywania swych zadań urządzenia zewnętrzne oraz właściwe oprogramowanie. W przypadku, gdy użytkownik komputera chciał skorzystać z jego konkretnej właściwości, takiej jak drukowanie wyników na papierze, to do systemu dołączano drukarkę. Gdy była potrzebna obszerna pamięć dyskowa, wówczas dyski dołączało się do systemu. Na zmianę takiego podejścia wpłynęła świadomość, że komputery oraz ich użytkownicy muszą korzystać ze wspólnych informacji i wspólnych zasobów komputerowych. Przykładem korzystania ze wspólnych informacji może być poczta elektroniczna lub przesyłanie plików. Korzystanie ze wspólnych zasobów może wymagać dostępu do urządzeń zewnętrznych drugiego systemu komputerowego. W początkach ery informatycznej wymiana danych odbywała się poprzez wymianę taśm magnetycznych, pakietów kart dziurkowanych lub wydruków komputerowych. Obecnie można komputery łączyć ze sobą za pomocą różnego rodzaju technik elektronicznych, zwanych sieciami komputerowymi. U początku swego istnienia sieci komputerowe były zindywidualizowanymi formami połączeń, stanowiącymi integralną część równie zindywidualizowanych rozwiązań obliczeniowych. Standardowe konfiguracje składały się z terminali połączonych sprzętowo z kontrolerami urządzeń. Kontrolery te umożliwiały dostęp multipleksowany (wielodostęp) do urządzeń komunikacyjnych pozwalających na przyłączanie urządzeń do sieci głównej. Procesor czołowy umożliwiał wielu urządzeniom komunikacyjnym współdzielenie pojedynczego kanału dostępu do sieci. Wykorzystywane programy do pracy z siecią działały jedynie w środowisku obsługiwanym przez pojedynczy system operacyjny, który mógł działać jedynie na urządzeniu jednego producenta. Również terminale użytkowników, urządzenia za pomocą których były one przyłączane do sieci, musiały być częścią zintegrowanego rozwiązania jednego producenta. W wyniku potrzeby poprawy wydajności pracy tak zintegrowanych rozwiązań systemowych naukowcy z centrum badawczego firmy Xerox w Palo Alto (PARC), usprawnili sposób współdzielenia plików i danych pomiędzy swoimi stacjami roboczymi, gdyż praktykowane udostępnianie danych przy użyciu dyskietek było czasochłonne i nieporęczne. Rozwiązanie opracowane w firmie Xerox polegało na utworzeniu pierwszej tzw. sieci lokalnej LAN (Local Area Network), sieć ta została nazwana Ethernet. Korzystała on z protokołów współdziałania międzysieciowego wyższych warstw. Jej możliwości rynkowe zostały dość szybko wykorzystane: pierwotny Ethernet, obecnie znany jako Ethernet Parc lub Ethernet I, został zastąpiony przez jego nieco udoskonaloną wersję - DIX Ethernet, zwaną również Ethernet II. Autorzy tego opracowania firma Xerox, Digital oraz Intel ustaliły wspólnie "standardy" sieciowe, do przestrzegania których zobowiązały się przy produkcji jej elementów składowych. PAGE 26 PAGE PAGE 26 Praca dyplomowa Istnieje wiele sposobów łączenia komputerów w sieci, tak samo jak z wielu rozmaitych usług można skorzystać w wyniku stworzenia sieci komputerowej. Jednymi z typowych zastosowań sieci komputerowych są: Przesyłanie poczty elektronicznej między użytkownikami różnych komputerów. Wymiana plików (danych) między systemami. W przypadku wielu programów użytkowych jest to bardzo łatwy sposób ich rozprowadzania zamiast przesyłania pocztą dyskietek lub dysków CD. Przesyłanie plików poprzez sieć warunkuje ich szybsze doręczenie. Wspólne korzystanie z urządzeń zewnętrznych. Przykładem w tym przypadku może być wspólne korzystanie ze wspólnych drukarek, skanerów jak i napędów. Duży wpływ na wspólne użytkowanie urządzeń zewnętrznych miał rynek komputerów osobistych i stacji roboczych, ponieważ często koszt urządzeń zewnętrznych przewyższał koszt samego komputera. Korzystanie ze wspólnych urządzeń zewnętrznych miało sens w tych instytucjach, w których było wiele komputerów osobistych lub stacji roboczych. Wykonywanie programu na drugiej maszynie. Zdarza się, że inny komputer może być lepiej dostosowany do wykonywania jakiegoś programu. Często bywa tak w przypadku programów wymagających specjalnych właściwości systemu, takich jak równoległe przetwarzanie lub dostęp do dużych obszarów pamięci. Zdalne zgłaszanie się komputera. W przypadku, gdy dwa komputery są połączone ze sobą w sieć, to korzystając w typ przypadku z jednego z nich można zgłosić się do drugiego. Sieć komputerowa jest systemem komunikacyjnym łączącym systemy końcowe zwane stacjami sieciowymi lub stacjami (host). Terminem host określa się każdy komputer podłączony do sieci. Hostami określa się nie tylko systemy, które umożliwiają pracę interakcyjną, ale również takie, które udostępniają jedynie wyspecjalizowane usługi jak np.: serwery drukowania lub serwery plików. W sieć lokalną, czyli sieć LAN, łączy się komputery niezbyt od siebie odległe, najczęściej pozostające w obrębie jednego budynku. Obecnie najczęściej stosuje się sieci lokalne zrealizowane w technologii Ethernet lub Token Ring. W takich sieciach dane są przesyłane z dużą szybkością do 10 Mbps, w przypadku zastosowania sieci Ethernet oraz 4 lub 16 Mbps w przypadku zastosowania sieci Token Ring. Nowsze rozwiązania, w których do przesyłu danych wykorzystuje się łącza światłowodowe, pozwalają na osiągnięcie prędkości tego przesyłu w granicach 100 Mbps. 2.2. Opis sieci LAN 1. Organizacje stanowiące standardy. a) ANSI PAGE 26 PAGE PAGE 26 Praca dyplomowa Amerykański Narodowy Instytut Normalizacji (ang. ANSI - The American National Standards Instytute) jest prywatną organizacją niekomercyjną. Jej misją± jest ułatwianie rozwoju, koordynacji oraz publikowanie nieobigatoryjnych standardów. Organizacja ta nie wdraża aktywnie ani nie narzuca nikomu swoich standardów. Uczestniczy natomiast w pracach organizacji ustanawiających standardy globalne, takich jak IOS, IEC itp., w związku z tym niezgodność z jej standardami powoduje niezgodność ze standardami globalnymi. b) IEEE Instytut Elektryków i Elektroników (ang. IEEE - The Institute of Electrical and Electronic) jest odpowiedzialny za definiowanie i publikowanie standardów telekomunikacyjnych oraz przesyłania danych. Jego największym osiągnięciem jest zdefiniowanie standardów LAN oraz MAN. Standardy te tworzą wielki i skomplikowany zbiór norm technicznych, ogólnie określany jako "Project 802" lub jako seria standardów 802. Celem IEEE jest tworzenie norm, które byłyby akceptowane przez instytut ANSI. Akceptacja taka zwiększyłaby ich forum dzięki uczestnictwa ANSI w globalnych organizacjach określających standardy. c) ISO Międzynarodowa Agencja Normalizacyjna (ang. ISO - International Organization for Standardization) została utworzona w 1946 roku w Szwajcarii, w Genewie. ISO jest niezależnym podmiotem wynajętym przez Organizację Narodów Zjednoczonych do określania standardów międzynarodowych. Zakres jej działania obejmuje praktycznie wszystkie dziedziny wiedzy ludzkiej, poza elektryki i elektroniki. Aktualnie ISO składa się z ponad 90 różnych organizacji standardo-dawczych z siedzibami na całym świecie. Najważniejszym standardem opracowanym przez ISO jest Model Referencyjny Połączonych Systemów Otwartych, czyli model OSI. d) IEC Międzynarodowa Komisja Elektrotechniczna (ang. IEC - International Electrotechnical Commission), z siedzib± również w Genewie, została założona w 1909 roku. Komisja IEC ustanawia międzynarodowe standardy dotyczące wszelkich zagadnień elektrycznych i elektronicznych. Aktualnie w jej skład wchodzą komitety z 40 państw. W Stanach Zjednoczonych Instytut ANSI reprezentuje zarówno IEC, jak i ISO. IEC oraz ISO dostrzegły, że technologie informatyczne stanowią potencjalny obszar zazębiania się ich kompetencji; w celu określenia standardów dla technologii informatycznych utworzyły, więc Połączony Komitet Techniczny (ang. JTC - Join Technical Committee). PAGE 26 PAGE PAGE 26 Praca dyplomowa Piątą warstwą modelu OSI jest warstwa sesji. Jest ona rzadko używana; wiele protokołów funkcje tej warstwy dołącza do swoich warstw transportowych. Zadaniem warstwy sesji modelu OSI jest zarządzanie przebiegiem komunikacji podczas połączenia miedzy dwoma komputerami. Przepływ tej komunikacji nazywany jest sesją. Warstwa ta określa, czy komunikacja może zachodzić w jednym, czy obu kierunkach. Gwarantuje również zakończenie wykonywania bieżącego żądania przed przyjęciem kolejnego. f) Warstwa prezentacji Warstwa prezentacji jest odpowiedzialna za zarządzanie sposobem kodowania wszelkich danych. Nie każdy komputer korzysta z tych samych schematów kodowania danych, więc warstwa prezentacji odpowiedzialna jest za translację między niezgodnymi schematami kodowania danych. Warstwa ta może być również wykorzystywana do niwelowania różnic między formatami zmiennopozycyjnymi, jak również do szyfrowania i rozszyfrowywania wiadomości. g)Warstwa aplikacji Najwyższą warstwą modelu OSI jest warstwa aplikacji. Pełni ona rolę interfejsu pomiędzy aplikacjami użytkownika a usługami sieci. Warstwę tę można uważać za inicjującą sesje komunikacyjne. 3. Ośrodki transmisji. a) Kable miedziane W konwencjonalnych sieciach komputerowych kable są podstawowym medium łączącym komputery ze względu na ich niską cenę i łatwość instalowania. Chociaż kable mogą być wykonane z różnych metali, wiele sieci jest połączonych kablami miedzianymi, ponieważ miedź ma małą oporność, co sprawia, że sygnał może dotrzeć dalej. Typ okablowania w sieciach komputerowych jest tak dobierany, aby zminimalizować interferencję sygnałów. Zjawisko to powstaje w kablach łączących komputery, ponieważ sygnał elektryczny biegnący w kablu działa jak mała stacja radiowa - kabel emituje niewielką ilość energii PAGE 26 PAGE PAGE 26 Praca dyplomowa elektromagnetycznej, która "wędruje" przez powietrze. Ta fala elektromagnetyczna, napotykając inny kabel generuje w nim słaby prąd. Natężenie wygenerowanego prądu zależy od mocy fali elektromagnetycznej oraz fizycznego umiejscowienia kabla. Zwykle kable nie biegną na tyle blisko, aby interferencja stanowiła problem. Jeżeli dwa kable leżą blisko siebie pod kątem prostym i sygnał przechodzi przez jeden z nich to prąd wygenerowany w drugim jest prawie niewykrywalny. Jeżeli jednak dwa kable leżą równolegle obok siebie, to silny sygnał wysłany jednym spowoduje powstanie podobnego sygnału w drugim. Ponieważ komputery nie rozróżniają sygnałów przypadkowych od zamierzonej transmisji, indukowany prąd może wystarczyć do zakłócenia lub uniemożliwienia normalnej transmisji. Aby zminimalizować interferencję, sieci są budowane z wykorzystaniem jednego z dwu podstawowych typów okablowania: skrętki lub kabla koncentrycznego. Okablowanie skrętką jest również stosowane w systemach telefonicznych. Skrętkę tworzą cztery pary kabla, z których każda jest otoczona materiałem izolacyjnym. Para takich przewodów jest skręcana. Dzięki skręceniu zmienia się elektryczne własności kabla i może on być stosowany do budowy sieci. Po pierwsze dlatego, że ograniczono energię elektromagnetyczną emitowaną przez kabel. Po drugie, para skręconych przewodów jest mniej podatna na wpływ energii elektromagnetycznej - skręcanie pomaga w zabezpieczeniu przed interferencją sygnałów z innych kabli. Drugi typ kabla miedzianego używanego w sieciach to kabel koncentryczny - takie samo okablowanie jest używane w telewizji kablowej. Kabel koncentryczny zapewnia lepsze zabezpieczenie przed interferencją niż skrętka. W kablu koncentrycznym pojedynczy przewód jest otoczony osłoną z metalu, co stanowi ekran ograniczający interferencję. Osłona w kablu koncentrycznym to elastyczna metalowa siatka wokół wewnętrznego przewodu. Stanowi ona barierę dla promieniowania elektromagnetycznego. Izoluje ona wewnętrzny drut na dwa sposoby: zabezpiecza go przed pochodzącą z zewnątrz energią elektromagnetyczną, która mogłaby wywołać interferencję, oraz zapobiega przed wypromieniowaniem energii sygnału przesyłanego wewnętrznym przewodem co mogłoby mieć wpływ na sygnał w innych kablach. Osłona w kablu koncentrycznym jest szczególnie efektywna, gdyż otacza centralny przewód ze wszystkich stron. Taki kabel może być umieszczony równolegle do innych a także zginany i układany wokół narożników. Osłona zawsze pozostaje na miejscu. Pomysł użycia osłony do zabezpieczenia przewodów został także zastosowany do skrętki. Skrętka ekranowana składa się z 4 par przewodów otoczonej metalową osłoną. Przewody są osłonięte materiałem izolacyjnym, dzięki czemu ich metalowe rdzenie nie stykają się; osłona stanowi jedynie barierę zabezpieczającą przed wkraczaniem i uciekanie promieniowania elektromagnetycznego. Wyróżnić można 5 kategorii skrętki. Kategorie 1 i 2 zostały uznane w 1995 roku za przestarzałe. Dwie z owych 5 kategorii okazały się najbardziej popularne wśród użytkowników - trzecia i piąta. Kategoria 3 oferuje pasmo 16 MHz, które umożliwia przesyłanie sygnałów z prędkością PAGE 26 PAGE PAGE 26 Praca dyplomowa do 10 Mbps na odległość maksymalną 100 m. Kategoria 4 obsługuje pasmo o szerokości 20 MHz, a kategoria 5 o szerokości 100 MHz. Przy założeniu, że wymagania dotyczące maksymalnej odległości są spełnione, kable kategorii 5 umożliwiają przesyłanie danych z prędkością 100 Mbps, 155 Mbps, a nawet 256 Mbps. b) Włókna szklane (światłowody) Do łączenia sieci komputerowych używa się również giętkich włókien szklanych, przez które dane są przesyłane z wykorzystaniem światła. Cienkie włókna szklane zamykane są w plastykowe osłony, co umożliwia ich zginanie nie powodując łamania . Nadajnik na jednym końcu światłowodu jest wyposażony w diodę świecącą lub laser, które służą do generowania impulsów świetlnych przesyłanych włóknem szklanym. Odbiornik na drugim końcu używa światłoczułego tranzystora do wykrywania tych impulsów. Można wymienić cztery główne powody przewagi światłowodów nad zwykłymi przewodami: Nie powodują interferencji elektrycznej w innych kablach ani też nie są na nią podatne. Impulsy świetlne mogą docierać znacznie dalej niż w przypadku sygnału w kablu miedzianym. Światłowody mogą przenosić więcej informacji niż za pomocą sygnałów elektrycznych. Inaczej niż w przypadku prądu elektrycznego, gdzie zawsze musi być para przewodów połączona w pełen obwód, światło przemieszcza się z jednego komputera do drugiego poprzez pojedyncze włókno. Obok tych zalet światłowody mają także wady: Przy instalowaniu światłowodów konieczny jest specjalny sprzęt do ich łączenia, który wygładza końce włókien w celu umożliwienia przechodzenia przez nie światła. Gdy włókno zostanie złamane wewnątrz plastikowej osłony, znalezienie miejsca zaistniałego problemu jest trudne. Naprawa złamanego włókna jest trudna ze względu na konieczność użycia specjalnego sprzętu do łączenia dwu włókien tak, aby światło mogło przechodzić przez miejsce łączenia. Wyróżniamy dwa typy światłowodów: Jednomodowe. Wielomodowe. c) Radio Fale elektromagnetyczne mogą być wykorzystywane nie tylko do nadawania programów telewizyjnych i radiowych, ale i do transmisji danych komputerowych. Nieformalnie o sieci, która korzysta z elektromagnetycznych fal radiowych, mówi się, że działa na falach radiowych, a transmisję określa się jako transmisję radiową. Sieci takie nie wymagają bezpośredniego fizycznego połączenia między komputerami. W zamian za to każdy uczestniczący w łączności komputer jest podłączony do anteny, która zarówno nadaje, jak i odbiera fale. PAGE 26 PAGE PAGE 26 Praca dyplomowa przyłączonym do sieci. Typowa magistrala składa się z pojedynczego kabla łączącego wszystkie węzły w sposób charakterystyczny dla sieci równorzędnej. Kabel nie jest obsługiwany przez żadne urządzenia zewnętrzne. Zatem wszystkie przyłączone do sieci urządzenia słuchają transmisji przesyłanych magistralą i odbierają pakiety do nich zaadresowane. Brak jakichkolwiek urządzeń zewnętrznych, w tym wzmacniaków, sprawia, że magistrale sieci lokalnych są proste i niedrogie. Jest to również przyczyna ograniczeń dotyczących odległości, funkcjonalności i skalowalności sieci. b) topologia pierścienia. Pierwszą topologią pierścieniową była topologia prostej sieci równorzędnej. Każda przyłączona do sieci stacja robocza ma w ramach takiej topologii dwa połączenia, po jednym dla każdego ze swoich najbliższych sąsiadów. Połączenie takie musiało tworzyć fizyczną pętlę, czyli pierścień. Dane przesyłane były wokół pierścienia w jednym kierunku. Każda stacja robocza działała podobnie jak wzmacniak, pobierając i odpowiadając na pakiety do nich zaadresowane, a także przesyłając dalej pozostałe pakiety do następnej stacji roboczej wchodzącej w skład sieci. Pierwotna pierścieniowa topologia sieci LAN umożliwiała tworzenie połączeń równorzędnych między stacjami roboczymi. Połączenia te musiały być zamknięte; czyli musiały tworzyć pierścień. Pierścienie te zostały wyparte przez sieci Token Ring, które to korzystały z koncentratorów wzmacniających. Wyeliminowało to podatność sieci pierścieniowej na zawieszenia się przez wyeliminowanie konstrukcji każdy-z-każdym pierścienia. Sieci Token Ring mimo pierwotnego kształtu pierścienia, tworzone są przy zastosowaniu topologii gwiazdy oraz metody dostępu cyklicznego. c) topologia gwiazdy. PAGE 26 PAGE PAGE 26 Praca dyplomowa Połączenie sieci LAN o topologii gwiazdy z przyłączonymi do niej urządzeniami rozchodzą się z jednego, wspólnego punktu, którym jest koncentrator. Każde urządzenie przyłączone do sieci w topologii gwiazdy może uzyskiwać bezpośredni i niezależny od innych urządzeń dostęp do nośnika. W tym celu urządzenia te muszą współdzielić dostępne szerokości pasma koncentratora. Topologie gwiazdy stały się dominującym we współczesnych sieciach LAN rodzajem topologii. Są one elastyczne, skalowalne i stosunkowo tanie w porównaniu z bardziej skomplikowanymi sieciami LAN o ściśle regulowanych metodach dostępu. d) topologie złożone. Topologie złożone są rozszerzeniami i/lub połączeniami podstawowych topologii fizycznych. Topologie podstawowe są odpowiednie jedynie do bardzo małych sieci LAN. Skalowalność topologii podstawowych jest bardzo ograniczona. Topologie złożone tworzone są z elementów składowych umożliwiających uzyskanie topologii skalowalnych odpowiadających zastosowaniom. Najprostszą z topologii złożonych otrzymać można w wyniku połączenia szeregowego wszystkich koncentratorów sieci. Taki sposób łączenia znany jest jako łańcuchowanie. Wykorzystuje ono porty już istniejących koncentratorów do łączenia ich z kolejnymi koncentratorami. Dzięki temu uniknąć można ponoszenie kosztów dodatkowych związanych z tworzeniem odpowiedniego szkieletu. Małe sieci LAN mogą być zwiększane (skalowane dodatnio) przez łączenie koncentratorów w łańcuchy (łańcuchowania ich). Łańcuchy stanowiły alternatywną, wobec sieci LAN pierwszej generacji, metodę przyłączania urządzeń. 5. Metody dostępu do nośnika. Każda sieć musi w jakiś sposób regulować dostęp do nośnika. Mechanizm regulacji dostępu do nośnika realizowany jest przez warstwę 2 modelu referencyjnego OSI (warstwę danych). W sieciach LAN dostęp do nośnika regulowany może być na jeden z czterech różnorodnych sposobów: •rywalizacji, •przesyłania tokenu, •priorytetu żądań, •przełączania. a) Dostęp do nośnika na zasadzie rywalizacji Sieć LAN, która używa realizacji jako podstawy do przyznawania prawa do transmisji, określana jest jako wykorzystująca metodę dostępu do nośnika na zasadzie rywalizacji. Wszystkie urządzenia konkurujące ze sobą o dostępne pasmo szerokości tworzą domenę kolizji. Dostęp na zasadzie rywalizacji jest prostym sposobem regulowania dostępu, gdyż nie posiada on żadnych scentralizowanych mechanizmów regulacyjnych. Zamiast tego PAGE 26 PAGE PAGE 26 Praca dyplomowa każde urządzenie przyłączone do sieci przyjmuje na siebie ciężar samodzielnego przeprowadzenia transmisji. Za każdym razem, kiedy urządzenie chce przesyłać dane, musi sprawdzić, czy kanał transmisyjny jest wolny, czy też nie. W definicji dostępu do nośnika na zasadzie rywalizacji domyślnie założono, że wszystkie urządzenia przyłączone do sieci mogą dane odbierać i wysyłać w tym samym zakresie częstotliwości. Nośniki transmisji mogą jednocześnie obsługiwać jeden tylko sygnał, który zajmuje całą dostępną szerokość pasma transmisyjnego. b) Dostęp do nośnika na zasadzie pierścienia Najpopularniejszym sposobem dostępu do nośnika jest przesyłanie tokenu. Przesyłanie tokenu jest zjawiskiem charakterystycznym dla sieci LAN opartych na topologii pierścienia. Token to specjalna ramka, która jest przesyłana w jednym kierunku do kolejnych urządzeń wchodzących w skład pierścienia. Token może być przesyłany tylko wtedy, gdy sieć jest wolna. Ramka tokenu ma najczęściej długość kilku oktetów i zawiera specjalny wzór bitów. Wzór ten jest zmieniany w celu zmiany tokena w sekwencję początku ramki informującej urządzenia znajdujące się w dalszej części pierścienia o tym, że otrzymana właśnie ramka jest ramką danych. Zaraz po sekwencji początku ramki umieszczone są w niej pary adresów odbiorcy i nadawcy. Token uznawany jest przez wszystkie urządzenia za element decydujący o dostępie do nośnika. Jeśli token przesyłany jest do urządzenia, które akurat nie ma potrzeby wysyłania czegokolwiek, urządzenie to może przetrzymać token przez 10 ms lub dłużej, jeśli zmieniona została wartość domyślna. Czas ten ma pozwolić urządzeniu, które ma tokenna zakończenie umieszczania w ramkach danych otrzymanych od protokołów warstw wyższych. Aby umieścić jakiekolwiek dane w sieci, urządzenie musi znajdować się w posiadaniu tokena. Jeśli go nie ma, musi poczekać, aż otrzyma go od sąsiada poprzedzającego go w pierścieniu. Jeśli czas upłynął, a urządzenie nie musiało nic przesyłać, oddaje ono kontrolę nad tokenem, który przekazywany jest do następnego urządzenia w sieci. Ogranicznik początku ramki może być przekonwertowany z powrotem do postaci tokenu tylko przez to urządzenie, które go umieściło w sieci. Token dociera do urządzenia które go utworzyło. Urządzenie to zmienia token do postaci pola Początku ramki. Wykonywane jest to po skopiowaniu przez urządzenie odbierające niesionych przez tę ramkę danych i zmodyfikowaniu jej wzoru bitowego w celu poinformowania urządzenia wysyłającego ramkę o pomyślnym jej otrzymaniu. Tak zmodyfikowana ramka danych kontynuuje swą podróż dookoła pierścienia, aż do powrotu do swego nadawcy, który otrzymawszy potwierdzenie pomyślnego dostarczenia zawartości, albo trzyma token przez określony czas, albo używa go do przenoszenia kolejnych danych. c) Dostęp do nośnika na zasadzie pierścienia w sieciach FDDI Sieci FDDI korzystaj± ze schematu przesyłania tokenu opisanego w punkcie poprzednim, lecz z drobną różnicą. Stacje nie muszą się wstrzymywać z dalszą pracą do czasu otrzymania przez nadawcę PAGE 26 PAGE PAGE 26 Praca dyplomowa optycznych ma dwa rodzaje układów; układ elektroniczny do konwersji między sygnałami AUI a danymi w postaci cyfrowej oraz układ do konwersji między sygnałami elektrycznymi a optycznymi, który zmienia dane cyfrowe na impulsy światła wędrujące światłowodem. Opisane układy muszą wykonywać konwersji w obu kierunkach, aby komputer podłączony przez taki modem mógł wysyłać i odbierać ramki. Główną zaletą modemów optycznych jest możliwość podłączenia komputera do odległej sieci lokalnej bez konieczności modyfikacji samej sieci lub tego komputera. Opóźnienia sygnałów w światłowodzie są małe, a przepustowość duża, opisana metoda umożliwia więc stosowanie łączy optycznych o długości do kilku kilometrów. Opisane rozwiązanie jest najczęściej stosowane do łączenia sieci w sąsiednich budynkach. 6. Protokoły sieciowe. Do przekazywania informacji przez sieć teleinformatyczną stosuje się protokoły liniowe, określające sposób transmisji danych na poziomie kanału fizycznego. zbiór procedur sterowania transmisją i sposób postępowania podczas inicjowania, utrzymania i zakończenia transmisji, a także sposób kontroli poprawności przekazu tworzą protokół liniowy. Istnieje wiele protokołów liniowych różniących się strukturą bloków wiadomości i sposobem sterowania, jednak wszystkie zawierają podstawowe fazy: nawiązanie i zestawienie łącza, właściwy przekaz danych, zakończenie transmisji i likwidacja połączenia. Protokołem komunikacyjnym nazywamy zbiór formalnych reguł i konwencji szczegółowo określających mechanizmy wymiany informacji między stacjami połączonymi medium transmisyjnym (kablem sieciowym). Protokoły znakowe. Protokoły zorientowane znakowo używają znaku o określonej (ustalonej) długości jako podstawowego nośnika informacji. Informacja jest transmitowana w blokach ograniczonych znakami sterującymi, a podstawowy format bloku protokołu zawiera: nagłówek, tekst i zakończenie. Wadami protokołów o orientacji znakowej są: konieczność rozpoznawania dużej liczby znaków i sekwencji sterujących, oraz złożony sposób zapewnienia przezroczystości informacyjnej. Protokoły bitowe. W protokołach zorientowanych bitowo podstawowym nośnikiem informacji jest bit (lub raczej strumień bitów) bez formalnego podziału pola informacji tekstowej na poszczególne znaki. Format bloku zawiera sekwencję "flag" wyznaczającą początek i koniec ramki oraz spełniającą rolę synchronizacji blokowej. Model OSI jest tylko ogólnym modelem koncepcyjnym komunikacji między stacjami podłączonymi do sieci. Model OSI nie określa szczegółowych metod komunikacji. Mechanizmy rzeczywistej komunikacji są określone w formie protokołów komunikacyjnych (Communication Protocols). Protokół realizuje funkcje jednej lub wielu warstw modelu OSI. Istniejąca obecnie bardzo duża liczba różnych protokołów komunikacyjnych utrudnia często zorientowanie się w mechanizmach działania sieci. Pomocne może okazać się uświadomienie PAGE 26 PAGE PAGE 26 Praca dyplomowa sobie podziału wszystkich protokołów komunikacyjnych na następujące klasy: Protokoły sieci lokalnych LAN (LAN Protocols) - obsługują funkcje dwóch najniższych warstw modelu OSI (warstw Fizycznej i Łącza danych). Protokoły sieci rozległych WAN (WAN Protocols) - obsługują funkcje trzech najniższych warstw modelu OSI (Fizycznej, Łącza danych i Sieciowej) i definiują komunikację przez różne media stosowane w sieciach rozległych. Protokoły trasowania (Routing Protocols) - obejmują warstwę Sieciową modelu OSI, są odpowiedzialne za określanie tras przepływu pakietów. Protokoły sieciowe (Network Protocols) - są to zbiory wielu różnych protokołów obejmujących wyższe warstwy modelu OSI (np. AppleTalk, DECnet, SNA, IP, IPX). a) Protokół Internetu, wersja 4 Protokół Internetu (IP) został opracowany około 20 lat temu przez Departament Obrony USA. Departament obrony szukał sposobu na połączenie różnych rodzajów posiadanych komputerów i sieci je obsługujących w jedną wspólną sieć. Osiągnięto to za pomocą warstwowego protokołu, który odizolował aplikację od sprzętu sieciowego. Protokół ten używa modelu nieco różniącego się od modelu OSI. Jest on nazwany jako model TCP/IP. Stos protokołów TCP/IP zawiera cztery warstwy funkcjonalne: Protokół Internetu (IP) został opracowany około 20 lat temu przez Departament Obrony USA. Departament obrony szukał sposobu na połączenie różnych rodzajów posiadanych komputerów i sieci je obsługujących w jedną wspólną sieć. Osiągnięto to za pomocą warstwowego protokołu, który odizolował aplikację od sprzętu sieciowego. Protokół ten używa modelu nieco różniącego się od modelu OSI. Jest on nazwany jako model TCP/IP. Stos protokołów TCP/IP zawiera cztery warstwy funkcjonalne: Warstwa procesu/aplikacji. Warstwa aplikacji dostarcza protokoły zdalnego dostępu i współdzielenia zasobów. Znane aplikacje, jak Telnet, FTP, SMTP, HTTP i wiele innych znajduje się i działają w tej warstwie i są uzależnione od funkcjonalności niższych warstw. Warstwa "host z hostem". Warstwa host z hostem protokołu IP luźno nawiązuje do warstw sesji i transportu modelu OSI. Obejmuje dwa protokoły: protokół sterowania transmisją TCP i protokół datagramów użytkownika UDP. Obecnie, w celu dostosowania do coraz bardziej zorientowanego na transakcje charakteru Internetu, definiowany jest trzeci protokół. Protokół ten nosi próbną nazwę protokołu sterowania transmisją i transakcją T/TCP. Protokół TCP zapewnia połączeniową transmisje danych pomiędzy dwoma lub więcej hostami, może obsługiwać wiele strumieni danych, kontrolę błędów, a nawet ponowne porządkowanie pakietów otrzymanych w niewłaściwej kolejności. Protokół datagramów użytkownika UDP jest innym protokołem IP warstwy host z hostem. Zapewnia on proste i mające niewielki narzut transmisje danych. Prostota datagramów czyni UDP protokołem nieodpowiednim dla niektórych aplikacji, za to doskonałym dla aplikacji bardziej wyszukanych, które mogą same zapewnić funkcjonalność połączeniową. Warstwa Internetu. Warstwa Internetu protokołu IPv4 obejmuje wszystkie protokoły PAGE 26 PAGE PAGE 26 Praca dyplomowa i procedury potrzebne do przesłania danych pomiędzy hostami w wielu sieciach. Pakiety przenoszące dane muszą być trasowane. Odpowiada za to protokół Internetu IP. b) Protokóły IPX/SPX Novell Zestaw protokołów firmy Novell bierze nazwę od swoich dwóch głównych protokołów: międzysieciowej wymiany pakietów IPX i sekwencyjnej wymiany pakietów SPX. Ten firmowy stos protokołów został oparty na protokole systemów sieciowych firmy Xerox, wykorzystywanym w pierwszej generacji Ethernet. Wymiana IPX/SPX zyskała na znaczeniu we wczesnych latach 80, jako integralna część systemu Novell Netware. Netware stał się faktycznym standardem sieciowego systemu operacyjnego dla sieci lokalnych pierwszej generacji. Protokół IPX w dużym stopniu przypomina IP. Jest bezpołączeniowym protokołem datagramowym, który nie wymaga ani nie zapewnia potwierdzenia każdego transmitowanego pakietu. Protokół IPX polega na SPX w taki sam sposób, w jaki protokół IP polega na TCP w zakresie porządkowania kolejności i innych usług połączeniowych warstwy 4. Stos protokołów IPX/SPX obejmuje cztery warstwy funkcjonalne: dostępu do nośnika, łącza danych, Internetu i aplikacji. Głównym protokołem warstwy aplikacji jest protokół rdzenia NetWare. Protokół NCP można bezpośrednio sprzęgnąć zarówno z protokołem SPX, jak i IPX. Jest wykorzystywany do drukowania, współdzielenia plików, poczty elektronicznej i dostępu do katalogów. Innymi protokołami warstwy aplikacji są: protokół informacyjny trasowania, firmowy protokół ogłoszeniowy usługi i protokół obsługi łącza systemu NetWare. Protokół warstwy Internetu SPX jest protokołem połączeniowym i może być wykorzystywany do przesyłania danych między klientem serwerem, dwoma serwerami czy dwoma klientami. c) Pakiet protokołów Apple Talk firmy Apple Gdy komputery Apple zyskały większą popularność, a ich użytkownicy zaczęli z nich korzystać w sposób bardziej wyszukany, nieunikniona została konieczność połączenia ich w sieć. Sieć opracowana przez Apple jest tak przyjazna użytkownikowi jak komputery Apple. Z każdym komputerem sprzedawany jest AppleTalk, czyli stos protokołów pracy sieciowej, a także niezbędny sprzęt. AppleTalk jest siecią równoprawną dostarczające proste funkcję jak korzystanie z plików i drukarek. Inaczej niż w sieciach klient serwer, funkcjonalności sieci równoprawnej nie ograniczają żadne sztywne definicje. Każdy komputer może działać jako serwer i klient. Stos protokołów AppleTalk obejmuje pięć warstw funkcjonalnych: dostępu do sieci, datagramową, sieci, informacji o strefach o aplikacji. Warstwa fizyczna i łącza danych służą do zapewnienia zgodności z technologiami sieciwymi opartymi na ustanowionych standardach. d) NetBEUI PAGE 26 PAGE PAGE 26 Praca dyplomowa przewodu, i oddzielnej sondy ze wzmacniaczem sterującym najczęściej źródłem dźwięku lub światła. 3. Wnioski z analizy stanu techniki Analiza stanu techniki bardzo wyraźnie pokazuje, że rozwój sieci komputerowych w dzisiejszych czasach jest stale na wysokim poziomie. W dobie globalizacji wszystkim zależy na jak najlepszej, najszybszej i najefektowniejszej metodzie operowania informacją. Do grupy tej należą nie tylko wielkie korporacje czy instytucje państwowe, ale także najzwyklejszy człowiek, który właśnie za pomocą sieci lokalnej czy Internetu łączy się z drugim człowiekiem. Nowe technologie wypierają stare po czym można wnioskować, że w przyszłości sieci komputerowe, jak i sam Internet, będą w stanie funkcjonować o wiele lepiej niż ma to miejsce na dzień dzisiejszy. PAGE 26 PAGE PAGE 26 Praca dyplomowa 4. Opis części praktycznej pracy 1. Schematy a) schematy układów Schemat nadajnika testera Schemat odbiornika testera Schemat przejściówki dla kabli wykonanych w normie 568B (krosowanych) b) schematy płytek Schemat płytki nadajnika Parametry elementów: R1=2 kΩ R2=100 kΩ PAGE 26 PAGE PAGE 26 Praca dyplomowa R3=1 kΩ R4=720 Ω C1=5 µF C2=330 µF U1 – NE555N U2 – HCC4017BF Schemat płytki odbiornika Parametry elementów: R=720 Ω DL – dioda LED D – dioda prostownicza 1n4148 2. Opis działania Tester sieci LAN został zbudowany na układach NE555N oraz HCC4017BF, są one zasilane napięciem 5V. Cały układ jest zasilany baterią 9V, której napięcie rozkłada się na zasilanie układów i diod. Poprzez baterię ładowany jest kondensator C2 , następnie napięcie jest podawane na nóżki zasilające układów. Układy NE555N i HCC4017BF są zasilane z nóżek 1,8 i 8,16. Od pojemności kondensatora C1 zależy częstotliwość migania diod. Im mniejsza pojemność kondensatora tym diody migają szybciej. W naszej pracy zastosowaliśmy kondensator o pojemności 4,7 F 0 6 DF, co dało nam czas ok. 2 sekund pomiędzy zapaleniem jednej diody, a drugiej. Układ U1 jest timerem, który odpowiada za częstotliwość migania diod, natomiast U2 steruje podawaniem sygnału na odpowiednie nóżki wtyku RJ45. Dzięki rezystorom ograniczamy napięcie podawane na układy scalone, co pozwala uniknąć ich uszkodzeniu. Rezystory znajdujące się przed wtykiem RJ ograniczają napięcie podawane na diody w odbiorniku testera. Poprzez kabel wykonany w normie 568A sygnały przesyłane są bezpośrednio do odbiornika. Jeżeli chcemy sprawdzić poprawność wykonania okablowania w normie 568B, czyli kabla krosowanego musimy użyć przejściówki dzięki której sygnały są podawane na odpowiednie nóżki wejścia RJ45 w odbiorniku. Sam odbiornik zbudowany został z diod prostowniczych 1n4148 i diod LED. Po włączeniu urządzenia w odbiorniku diody zapalają się kolejno zaczynając od drugiej diody. Jest to spowodowane tym, że na pierwszą diodę jest podawany sygnał ujemny. Wraz z zapaleniem kolejnej diody sygnał ujemny jest podawany na diodę która się wcześniej świeciła. W praktyce wygląda to tak jakby sygnał ujemny podążał za sygnałem dodatnim. W taki oto sposób pierwsza żyła w kablu sprawdzana jest ostatnia. Cykl ten powtarza się dopóki dopóty nie wyłączymy urządzenia. 3. Instrukcja obsługi PAGE 26 PAGE PAGE 26 Praca dyplomowa