

Studiuj dzięki licznym zasobom udostępnionym na Docsity
Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium
Przygotuj się do egzaminów
Studiuj dzięki licznym zasobom udostępnionym na Docsity
Otrzymaj punkty, aby pobrać
Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium
Społeczność
Odkryj najlepsze uniwersytety w twoim kraju, według użytkowników Docsity
Bezpłatne poradniki
Pobierz bezpłatnie nasze przewodniki na temat technik studiowania, metod panowania nad stresem, wskazówki do przygotowania do prac magisterskich opracowane przez wykładowców Docsity
Notatki przedstawiające zagadnienia z zakresu statystyki opisowej: wnioskowanie statystyczne; weryfikacja hipotez statystycznych, testy parametryczne.
Typologia: Notatki
1 / 2
Ta strona nie jest widoczna w podglądzie
Nie przegap ważnych części!
Podstawowym zagadnieniem pojawiającym się w badaniu częściowym jest możliwość uogólniania uzyskanych na podstawie próby wyników, na całą populację oraz oszacowanie popełnianych przy tym błędów. Takie działania nazywa się wnioskowaniem statystycznym.
Wyróżnia się dwa podstawowe typy problemów: estymacja (szacowanie) nieznanych wartości parametrów rozkładu cechy, sprawdzanie (weryfikacja) hipotez dotyczących wartości parametrów rozkładu lub postaci samego rozkładu.
Cechy statystyczne (mierzalne), które przyjmują wartości całkowite nazywa się cechami skokowymi lub dyskretnymi. Cechy przyjmujące wartości rzeczywiste nazywają się cechami ciągłymi.
Empiryczny rozkład cechy stanowi podstawę dla wszystkich analiz badanej cechy. Jeżeli próba dotycząca jednej cechy mierzalnej nie jest zbyt liczna, tzn. dotyczy 30 jednostek, to wstępne jej opracowanie polega na uszeregowaniu w porządku rosnącym danych liczb. Otrzymany w ten sposób ciąg liczb nazywa się szeregiem pozycyjnym. Jeżeli liczebność próby jest duża (orientacyjnie 30), to pierwszym etapem jej opracowania jest dokonanie grupowania, czyli klasyfikacji. Grupowanie polega na podziale próby na podzbiory zwane grupami lub klasami , a wartością reprezentującą poszczególne klasy są ich środki. Przedziały klasowe oraz ich liczebności, czyli liczby jednostek próby należących do danej klasy tworzą razem tzw. szereg rozdzielczy.
Aby utworzyć szereg rozdzielczy należy:
1. ustalić obszar zmienności R badanej cechy, czyli przedział ograniczony najmniejszym i największym elementem próby
R=Xmax-Xmin
Gdzie: Xmax – największy element w próbie, Xmin - najmniejszy element w próbie.
2. wyznaczyć ilość przedziałów klasowych m
Podanie jakichkolwiek ogólnych prawideł dotyczących podziału na klasy nie jest możliwe. Istnieje natomiast kilka sugestii dotyczących liczby przedziałów klasowych m próby o liczebności n:
Zbyt duża liczba klas (małe przedziały klasowe) nie daje przejrzystego obrazu i ujawnia przypadkowe odchylenia związane z działaniem czynników ubocznych. Zbyt mała liczba klas zaciera istotne szczegóły struktury próby.
3. podzielić obszar zmienności na klasy i ustalić reprezentację klasy (środek przedziału klasowego) oraz końce przedziałów klasowych
Szerokość przedziału klasowego:
Wektor brzegów (końców) przedziałów Xb:
Wektor środków przedziałów klasowych Xp:
4. wyznaczyć liczebność w klasach - fj w programie Mathcad f=hist(Xb, X) 5. wyznaczyć prawdopodobieństwa empiryczne
6. zbudować empiryczny rozkład cechy – HISTOGRAM.