12 Instrumentos, Notas de estudo de Engenharia Aeronáutica
adriano-almeida-6
adriano-almeida-6

12 Instrumentos, Notas de estudo de Engenharia Aeronáutica

55 páginas
50Números de download
1000+Número de visitas
100%de 0 votosNúmero de votos
5Número de comentários
Descrição
Apostila do Curso Mecânico de Manutenção de Aeronaves Célula - DAC
100 pontos
Pontos de download necessários para baixar
este documento
Baixar o documento
Pré-visualização3 páginas / 55
Esta é apenas uma pré-visualização
3 mostrados em 55 páginas
Esta é apenas uma pré-visualização
3 mostrados em 55 páginas
Esta é apenas uma pré-visualização
3 mostrados em 55 páginas
Esta é apenas uma pré-visualização
3 mostrados em 55 páginas
CAPÍTULO 12 INSTRUMENTOS INTRODUÇÃO A operação segura, econômica e digna de confiança das modernas aeronaves depende, principalmente, do uso dos instrumentos. Os primeiros instrumentos de aeronaves foram os indicadores de pressão de combustível e de óleo, para informar sobre problemas do motor, de modo que a aeronave pudesse pousar antes que o motor falhasse. Quando foram desenvolvidas as aeronaves que voam sobre grandes distâncias, as condições do tempo tornaram-se um problema. Instrumentos foram desenvolvidos para auxiliar o vôo através das péssimas condições de tempo. A instrumentação é basicamente a ciência da medição. Velocidade, distância, altitude, atitude, direção, temperatura, pressão e rotações por minuto (R.P.M) são medidas, e essa medição é apresentada em instrumentos na cabine. Existem dois tipos de grupos de instrumentos de aeronaves. Um está de acordo com o trabalho que ele executa, estando dentro desse grupo a classe dos instrumentos de vôo, instrumentos do motor e os de navegação; o outro tipo é baseado no princípio do seu funcionamento. Alguns operam com relação às mudanças de temperatura ou pressão de ar e outros pela pressão de fluidos. Outros são ativados por magnetismo e eletricidade, e ainda existem os que dependem da ação giroscópica. Os instrumentos que auxiliam no controle da atitude da aeronave em vôo são conhecidos como instrumentos de vôo. Como esses instrumentos devem fomecer informações instantaneamente, eles estão localizados no painel principal de instrumentos, ao alcance de uma rápida referência visual para o piloto. Os instrumentos básicos de vôo em uma aeronave são o velocímetro, o altiímetro e a bússola magnética. Além desses, algumas aeronaves podem ter indicadores de curvas, de subida e descida e horizonte artificial. Os instrumentos de vôo são operados pelas pressões atmosféricas, de impacto, diferencial e estática, ou por um giroscópio. 12-1 Os instrumentos dos motores têm por finalidade medir a quantidade e pressão dos líquidos (óleo e combustível) e dos gases (pressão de admissão), rotação do motor (RP.M.) e temperatura. Os instrumentos do motor normalmente incluem um tacômetro, medidores das pressões do óleo e do combustível, medidor da temperatura do óleo, e indicador da quantidade de combustível. Além desses, algumas aeronaves que são equipadas com motores convencionais, possuem ainda indicadores de: pressão de admissão, temperatura da cabeça do cilindro e temperatura do ar do carburador. As aeronaves equipadas com motores a turbina terão indicadores da temperatura da turbina, ou do tubo de escapamento, e poderão ter também indicadores da razão de pressão dos gases do escapamento. Os instrumentos de navegação fornecem informações que possibilitam ao piloto comandar a aeronave em cursos acuradamente definidos. Esse grupo de instrumentos inclui um relógio, bússolas (bússola magnética e indicador giroscópico de direção), rádios e outros instrumentos para apresentar informações de navegação ao piloto. CAIXAS DE INSTRUMENTO Um instrumento típico pode ser comparado a um relógio, que possui um mecanismo, um mostrador ou face, ponteiros ou mãos, e uma cobertura de vidro. O mecanismo do instrumento está protegido por uma caixa formada por uma ou duas peças. Vários materiais, tais como liga de alumínio, liga de magnésio, ferro, aço, ou plástico, são usados na fabricação das caixas de instrumentos. Baquelite é o plástico mais utilizado. As caixas, para os instrumentos operados eletricamente, são feitas de ferro ou aço; esses materiais permitem um caminho para o campo de força magnético perdido, que, de outra maneira, iria interferir com os equipamentos de rádio e eletrônicos. Alguns mecanismos de instrumentos estão embalados em caixas vedadas ao ar, enquanto outras caixas possuem um orifício de ventilação. Esse orifício permite que a pressão de ar interna sofra as variações causadas com a mudança de altitude da aeronave. MOSTRADORES A numeração, as marcações do mostrador e os ponteiros dos instrumentos são frequentemente cobertos com uma pintura brilhante. Alguns instrumentos utilizam nessa pintura, o “sulphide calcium”, que é uma substância que brilha horas após a exposição na luz. Outros instrumentos têm uma camada fosforescente, que brilha somente quando estimulada por uma pequena lâmpada ultravioleta instalada na cabine. Alguns instrumentos são marcados com uma combinação de sais, óxido de zinco e “shellac” radioativo. No manuseio desses instrumentos, cuidados devem ser tomados para evitar o envenenamento com o “radium”. Os efeitos do “radium” são cumulativos e podem aparecer após uma exposição por longo período, e contínua quantidades de radiação. O envenenamento normalmente resulta do toque na boca ou no nariz, após o manuseio com os mostradores dos instrumentos ou com a tinta radioativa. Após esse manuseio, as mãos deverão ser mantidas afastadas da boca e do nariz, e lavadas, com água quente e sabão, tão cedo quanto possível. MARCAÇÕES DE LIMITES As marcações de limites dos instrumentos indicam quando um sistema em particular, ou componente, está operando em uma desejada e segura gama de operação, ou em condições inseguras. Os instrumentos devem ser marcados e graduados, de acordo com as especificações adequadas ao tipo de aeronave, contidas no Manual de vôo ou no Manual de manutenção. A marcação dos instrumentos normalmente consiste de decalques coloridos ou pinturas aplicadas na borda extema do vidro do instrumento, ou sobre a graduação na face do mostrador. As cores geralmente usadas como marcação de limites são o vermelho, o amarelo, o verde, o azul ou o branco. As marcações são usualmente na forma de um arco ou de uma linha radial. Uma linha vermelha radial pode ser usada para indicar alcances máximos e mínimos. Operações além dessas marcas limites são perigosas e devem ser evitadas. O arco azul indica limites onde a operação é permitida sob certas condições, o arco verde indica alcance normal de operação durante operações contínuas, a cor amarela é usada para indicar cautela. Uma marca de referência branca é pintada entre o vidro do mostrador e a caixa do instrumento, em todos os instrumentos onde os limites de operação são pintados no vidro do mostrador. Esta marca indicará se houve algum movimento do vidro em relação ao instrumento, permitindo, desta forma, que qualquer indicação errônea seja prontamente descoberta. O movimento do vidro que contém as indicações causará erro de leitura em relação ao mostrador do instrumento. PAINÉIS DOS INSTRUMENTOS Com algumas exceções, os instrumentos são montados no painel na cabine de pilotagem, de forma que os mostradores são totalmente visíveis ao piloto ou co-piloto. Os painéis de instrumentos são comumente construídos com uma chapa de alumínio resistente o suficiente para evitar flexão. Os painéis são não-magnéticos, e pintados com uma tinta fosca para evitar brilho ou reflexos. Em aviões equipados com poucos instrumentos somente um painel será necessário. Em alguns aviões painéis adicionais são requeridos. Em tais casos, o painel de instrumento frontal é usualmente conhecido como o painel “Principal” de instrumentos, para diferenciá-lo dos painéis adicionais construídos na paite superior ou de lado no compartimento de vôo. Em alguns aviões o painel de instrumentos é também conhecido como o “painel do piloto ou co-piloto”, porque muitos dos instrumentos dos pilotos do lado esquerdo do painel são duplicados do lado direito. O método de montar instrumentos no seu painel respectivo depende do desenho do estojo do instrumento. Alguns instrumentos têm um formato que permite sua montagem por trás do painel. Porcas colocadas nos cantos dos instrumentos permitem a sua fixação com parafusos; geralmente a parte frontal desses instrumentos não tem bordas, esses instrumentos podem, também, ser montados pela parte frontal do painel e afixados com parafusos e porcas. A montagem de instrumentos que não têm bordas na parte frontal é um processo mais simples. O estojo sem borda é montado pela frente do painel. Uma braçadeira de tipo especial, no formato e no tamanho do estojo do instrumento, é atada na face traseira do painel. Parafusos atuadores são conectados à braçadeira e são acessíveis através do painel. O parafuso pode ser movido para afrouxar a braçadeira, permitindo que o instrumento deslize livremente através dela. Após o instrumento ter sido posicionado, o parafuso é apertado para que a braçadeira aperte o estojo do instrumento. Os painéis de instrumentos geralmente são montados em coxins para absorver impactos de baixa frequência e alta amplitude. Esses amortecedores geralmente são usados em jogos de dois, cada um em apoios separados. Os dois amortecedores absorvem a maioria da vibração vertical e horizontal, mas permitem que os instrumentos operem em condição de vibração menor. Uma vista seccionada de um típico amortecedor de vibração é mostrado na figura 12-1. Cromete de borracha Suporte Painel Figura 12-1 Secção de um amortecedor de painel de instrumento. O tipo e o número de coxins usados nos painéis de instrumentos são determinados pelo peso da unidade. O peso da unidade completa é dividido pelo número de pontos de fixação. Por exemplo, um painel de instrumento pesando 16 libras que é afixado em 4 pontos vai exigir 08 coxins amortecedores, cada um capaz de suportar 4 libras. Quando o painel for montado, o peso deverá flexionar os amortecedores aproximadamente 1/8”. Os amortecedores dos painéis de instrumentos deverão estar livres para mover-se em todas as direções e ter espaço suficiente para evitar contato com a estrutura que suporta o painel. Quando um painel não tem espaço suficiente, os amortecedores devem ser inspecionados quanto a rachaduras ou deterioração. REPARO DOS AERONAVES INSTRUMENTOS DAS O reparo de instrumentos de aeronaves é altamente especializado, requerendo ferramentas e equipamentos especiais. Os técnicos de instrumento devem ter treinamento especializado ou, ainda, extensiva prática numa oficina de reparos. Por esses motivos, o reparo dos instrumentos deve ser executado por uma oficina devidamente certificada para reparo de instrumento. Entretanto, os mecânicos são responsáveis pela instalação, conexão, remoção , prestação de serviços e checagem funcional dos instrumentos. INDICADORES PRESSÃO (MANÔMETROS) DE Indicadores de pressão ou Manômetros são usados para indicar a pressão na qual o óleo do motor está sendo forçado através dos rolamentos, nas passagens de óleo e nas partes móveis do motor, e a pressão na qual o combustível é entregue ao carburador ou controle de combustível. Esses instrumentos são usados também para medir a pressão no ar dos sistemas de degelo e giroscópicos, medem também as misturas ar/combustível na linha de admissão, e a pressão de líquidos e de gases em diversos outros sistemas. Instrumentos dos motores Os instrumentos dos motores são geralmente três instrumentos agrupados numa peça única. Um instrumento típico de motor contém indicações de pressão de óleo, indicações de pressão de gasolina e temperatura do óleo, conforme mostra a figura 12-2. Figura 12-2 Unidade de indicação dos motores. Dois tipos de instrumentos de indicar temperatura do óleo são disponíveis para uso no painel de instrumentos do motor. Um tipo consiste de uma resistência elétrica. A indicação de temperatura de óleo trabalha com uma corrente elétrica fomecida pelo sistema C.C. da aeronave. O outro tipo, um termômetro capilar de óleo, é um termômetro do tipo a vapor consistindo de um bulbo conectado por um tubo capilar a um tubo “Bourdon”. Um ponteiro conectado ao tubo Bourdon, através de um mecanismo multiplicador, indica no mostrador a temperatura do óleo. O tubo Bourdon num instrumento de aeronave é uma peça feita de um tubo de metal oval ou achatado, como vemos no corte transversal da figura 12-3. Essa peça é oca, presa firmemente no estojo do instrumento de um lado, e do outro lado é livre de movimentos, e seus movimentos são transmitidos para um mostrador através de conexões móveis. O sistema de óleo do motor está ligado ao interior do tubo Bourdon. A pressão do óleo existente no sistema, atuando no interior do tubo causa uma deformação pela expansão da peça, devido a força da pressão. Quando não há pressão, a peça por ser flexível, retorna a sua posição original. Esse movimento de expansão ou retração é transmitido para o mostrador na parte da frente do instrumento, medindo a pressão do fluido. Indicadores de pressão hidráulica Os mecanismos usados no recolhimento ou abaixamento do trem de pouso, ou os flapes, na maioria do aviões são operados por um sistema hidráulico. Parafuso batente da mola Figura 12-3 Indicador de pressão tipo tubo de Bourdon. Um indicador para medir a pressão diferencial no sistema hidráulico indica como este sistema está funcionando. Os indicadores de pressão hidráulica são projetados para indicar, ou a pressão do sistema completo, ou a pressão de uma unidade em particular no sistema. Um mostrador típico de hidráulica é mostrado na figura 12-4. O estojo desse instrumento contém um tubo Bourdon e um mecanismo de coroa e pinhão, através do qual os movimentos de deformação do turbo Bourdon são amplificados e transferidos para o ponteiro. pressão A posição do ponteiro no mostrador calibrado indica a pressão hidráulica em libras por polegada ao quadrado. As bombas que geram pressão para as unidades hidráulicas dos aviões são movidas, ou pelo próprio motor do avião, ou por motor elétrico, ou por ambos. Alguns sistemas usam um acumulador de pressão para manter uma reserva de fluido hidráulico sob pressão em qualquer tempo. Em tais casos, o indicador de pressão registra permanentemente a pressão no acumulador. Em outros sistemas hidráulicos a pressão de operação é gerada somente quando necessária, e o registro de pressão no instrumento somente aparecerá durante essas condições. [1 ' 1 o00 “> Ca PRESSURE LB.SQ, IN, Figura 12-4 Indicador de pressão hidráulica. Indicadores de pressão do sistema de degelo Alguns aviões são equipados com câmaras de borracha nas superfícies frontais das asas e estabilizadores. Essas câmaras inflam e esvaziam com ar fornecido por um sistema de pressão próprio. A finalidade é provocar a quebra de gelo acumulado nessas superfícies. Essas câmaras de ar serão chamadas, daqui para frente de “BOOTS”. Os Booís de expansão de borracha, que degelam os bordos de ataque das asas e estabilizadores em alguns aviões, são operados por um sistema de ar comprimido. Há um instrumento que mede a pressão do sistema, medindo a diferença entre a pressão atmosférica e a pressão no interior do sistema de degelo, indicando se há suficiente pressão para operar os boots degeladores. O instrumento também fomece ao sistema um método de medida ao se ajustar a válvula de alívio e o regulador do sistema degelo. Um indicador típico de pressão é mostrado na figura 12-5. O estojo tem um 1espiro na parte inferior para manter pressão atmosférica no interior do instrumento, bem como prover um dreno para qualquer umidade que possa acumular-se no interior do instrumento. O mecanismo do instrumento de medir a pressão de degelo consiste de um tubo Bourdon, e uma engrenagem com um pinhão, para amplificar o movimento do tubo e transferi-lo para o ponteiro. A pressão do sistema de degelo entra no tubo Bourdon através de uma conexão na parte posterior do instrumento. Um instrumento de pressão é tipicamente calibrado de O PSI até o máximo de 20 PSI, com a escala marcada em graduações de 2 PSI, conforme indica a figura 12-5. DE-ICING PRESSURE Figura 12-5 Indicação da pressão do degelador. Quando instalado e conectado num sistema de pressão de degelo do avião o indicador do instrumento permanece em 0, a não ser que o sistema degelo esteja operando. O ponteiro do instrumento flutuará de O PSI até, aproximadamente, 08 PSI sob condições normais, porque os boots degeladores são intermitentemente inflados e esvaziados. Esta flutuação é normal e não deverá ser confundida com oscilação. Indicadores de medir pressão tipo diafragma Este tipo de instrumento usa um diafragma para medir pressão. A pressão ou sucção a ser medida é admitida ao interior do diafragma sensível a pressão, através de um furo na parte traseira do estojo do instrumento. Uma pressão oposta, geralmente a pressão atmosférica, é aditivada através de um respiro na caixa do instrumento (figura 12-6). Como as paredes do diafragma são muito finas, o aumento de pressão causará uma expansão no diafragma; e uma diminuição de pressão causará uma contração no diafragma. Qualquer movimento do diafragma é transmitido ao ponteiro por meio de um eixo, engrenagem e pinhão que são conectadas à parte da frente. Esse instrumento mede também a pressão diferencial, porque indica a diferença entre a pressão estática admitida pelo respiro do instrumento, e a pressão dinâmica ou fluxo dentro do diafragma. 12-6 Indicador diafragma. Figura de pressão tipo Indicadores de sucção Indicadores de sucção são usados nos aviões para indicar a quantidade de sucção que aciona os instrumentos giroscópicos movidos por ar. Os rotores dos instrumentos giroscópicos são mantidos em movimento por correntes de ar dirigidas contra a palhetas do rotor. Essas correntes de ar são produzidas pelo bombeamento de ar para fora das caixas do instrumento por uma bomba de vácuo. A pressão atmosférica, então, força o ar para o interior dos estojos dos instrumentos através de filtros, e é este ar que é dirigido contra as palhetas do rotor para movê-los e girá-los. O indicador de sucção indica se o sistema de vácuo está trabalhando adequadamente. O indicador de sucção tem um 1espiro para a atmosfera ou para a linha do filtro de ar, e contém um diafragma sensível à pressão e mais o mecanismo usual multiplicador que amplifica o movimento do diafragma e transfere esse movimento ao ponteiro. A leitura do instrumento de sucção indica a diferença entre a pressão atmosférica e a pressão negativa no sistema de vácuo. Indicadores da pressão de admissão O instrumento de medir a pressão de admissão é muito importante numa aeronave equipada com motor a pistão. O instrumento é projetado para pressão absoluta. Esta pressão é a soma da pressão do ar e a pressão adicional criada por um compressor. O mostrador do instrumento é calibrado em polegadas de mercúrio (HG). Quando o motor não está funcionando, o indicador de pressão de admissão registra a pressão atmosférica estática. Quando o motor está funcionando, a leitura obtida no indicador de pressão de admissão depende da rotação do motor. Aneroide compensador de altitude Diafrágia da pressão de admissão Figura 12-7 Indicação da pressão de admissão. A pressão indicada é a pressão imediatamente antes da entrada nos cilindros do motor. O esquema de um tipo de instrumento de medir pressão de admissão é mostrado na figura 12-7. O invólucro extemo do instrumento protege e contém o mecanismo. Uma abertura atrás do estojo conecta-o com o coletor de admissão no motor. O instrumento contém um diafragma aneróide, e uma conexão que transmite o movimento do diafragma ao ponteiro. Esse sistema de conexão está completamente isolado da câmara de pressão e, portanto, não está exposto aos vapores corrosivos dos gases da linha de admissão. A pressão existente no coletor de admissão ingressa na câmara selada através de uma conexão, que é um tubo capilar de extensão curta, na traseira do instrumento. Esse tubo capilar age como uma válvula de segurança para prevenir danos ao instrumento por possível retrocesso do motor. O aumento repentino de pressão causado por um retrocesso é consideravelmente reduzido pela capilaridade do tubo que tem um diâmetro reduzido. Quando se instala um indicador de pressão de admissão, um cuidado especial é tomado para assegurar que o ponteiro está na posição vertical quando registrar 30” de HG. Quando o motor não está funcionando, a leitura do instrumento deverá ser a mesma que a pressão atmosférica local. Isso poderá ser verificado através de um barômetro que esteja em condições de operação normal. Na maioria dos casos, o altimetro do avião pode ser usado porque é um instrumento de medir pressão atmosférica. Com o avião no solo, os ponteiros do altimetro devem ser posicionados em zero e o painel de instrumento deve ser vibrado algumas vezes com as mãos, para remover qualquer possibilidade de ponteiros travados. A escala do barômetro no indicador do altimetro mostra a pressão atmosférica quando os ponteiros do altiímetro estão em zero. O indicador de pressão da admissão deve ter a mesma leitura de pressão, se isto não ocorre, o instrumento deve ser substituído por outro que esteja operando adequadamente. Se o ponteiro falha em responder inteiramente, o mecanismo está com toda probabilidade de defeito; o instrumento deve ser removido e substituído. Se o ponteiro responde, mas indica incorretamente, pode haver umidade no sistema, obstrução nas linhas, um vazamento no sistema ou um mecanismo defeituoso. Quando há dúvida sob qual desses itens é a causa do mau funcionamento, o motor deve ser operado em regime mínimo, e uma válvula dreno (comumente localizada perto do instrumento) aberta por poucos minutos; isto, usualmente, limpa o sistema da umidade. Para limpar uma obstrução, as linhas podem ser desligadas e assopradas com ar comprimido. O mecanismo do instrumento pode ser verificado quanto a vazamentos, desconectando-se a linha final do motor e aplicando pressão de ar até que o instrumento indique 50” de mercúrio, então a linha deve ser rapidamente fechada. Se o ponteiro do instrumento retoma a indicar a pressão atmosférica, é porque existe um vazamento. Se um vazamento está evidente, mas não pode ser localizado, o instrumento deve ser substituído. SISTEMA PITOT ESTÁTICO Três dos mais importantes instrumentos de vôo estão conectados a um sistema Pitot estático. Esses instrumentos são: o indicador de velocidade aerodinâmica, o altímetro e o indicador de razão de subida (Climb). A figura 12-8 mostra esses 3 instrumentos conectados ao tubo de pitot. Pressao de impacto Pressão estática Ração de su SEA bida e des”. voloci- cida retro Figura 12-8 Sistema pitot-estático O Sistema de Pitot ou Tubo de Pitot, como é chamado, consiste de 2 seções como mostrado na figura 12-9. A seção da frente do tubo de Pitot está aberta por um furo que recebe a força total de pressão de ar de impacto, no final desta seção existe uma peça que protege o Tubo de Pitot da umidade e da sujeira, que poderá ser soprada para dentro do tubo. A umidade pode ser drenada através de um pequeno furo na base da seção frontal. A pressão produzida pelo ar de impacto, dentro do Tubo de Pitot, é conduzida através de um tubo para uma câmara dentro do instrumento indicador de velocidade aerodinâmica. O Tubo de Pitot tem o formato de uma barbatana de tubarão. A seção traseira do Tubo de Pitot está equipada por pequenos orifícios nas superfícies superiores e inferiores. Esses orifícios são projetados e localizados de forma que esta parte do sistema provocará medidas da pressão atmosférica numa condição estática ou estável. A seção estática contém um tubo que é conectado ao velocímetro, ao altímetro e ao indicador de razão de subida (Climb). Muitos tubos de Pitot são providos com elementos aquecedores, para prevenir a formação de gelo durante o vôo em temperaturas muito baixas (figura 12-9). Durante condições de formação de gelo, elementos de aquecimento elétrico podem ser ligados por meio de uma chave na cabine. Este circuito elétrico para o elemento de aquecimento poderá ser conectado através da chave de ignição do motor(no caso da chave de aquecimento do Pitot ser deixada por esquecimento na posição “ligado”, não haverá danos à bateria quando o motor não estiver operando). Cômara de pressao Tubo supe- xior estético Tubo superior de pressao Tubo z Piloá Furo estã Breno Placa des 1 proteção Dre ni Re /Contito o? / méges | Samara | fofêtrico Aquecedor” tático aquece or Figura 12-9 Cabeça do tubo de pitot. O Tubo de Pitot é montado no lado de fora do avião, em um local onde o fluxo de ar é menos sujeito a turbulência. Ele está apontando para frente, numa direção paralela à linha de vôo do avião. O tipo geral de Tubo de Pitot é projetado para montagem, geralmente abaixo do nariz da fuselagem do avião. Um outro tipo é projetado para instalação abaixo do bordo de ataque das asas. Ambos os tipos são mostrados na figura 12-10. Embora haja uma pequena diferença em sua construção, eles operam de forma idêntica. A maiona dos Tubos de Pitot são fabricados com uma conexão em ambas as linhas, desde o tubo perto do ponto em que o tubo está atado ao avião ou mastro. A magia no tostado no À nariz do fusclageu Figura 12-10 Cabeça do tubo pitot. Estas conexões simplificam a remoção e substituição e são, usualmente, atingidas através de uma janela de inspeção na asa ou fuselagem. Quando um Tubo de Pitot tiver que ser removido, estas conexões deverão ser desconectadas antes que qualquer parafuso de montagem ou porca de trava sejam removidos. Em muitos aviões equipados com um Tubo Pitot, uma fonte alternada de pressão estática está disponível para uso em emergência. Um diagrama esquemático de um sistema típico é mostrado na figura 12-11. Conforme mostrado neste diagrama, a fonte alternada de pressão estática deve ser ventilada para o interior do avião. Tubo de pitot NL Linha de Pior, Linha estárico Alternativa de fonte es tática (gr da cabine) LR =) Altímetro ventil, é Linha. estática Razão subida Figura 12-11 Sistema pitot-estático com fonte de pressão estática. Outro tipo de sistema de Pitot é projetado com a localização das fontes para o Pitot e pressão estática situados em diferentes posições no avião. Este tipo de sistema está ilustrado na figura 12- 12. A pressão de impacto é obtida no Tubo de Pitot que está montado paralelo ao eixo longitudinal do avião e, geralmente, em linha com o vento relativo. O bordo de ataque da asa ou a seção do nariz ou estabilizador vertical são as posições mais comuns de montagem dos Pitots, porque nestes pontos, usualmente ocorre uma mínima turbulência de ar provocada pelo movimento do avião. A pressão estática neste tipo de sistema de Pitot é obtida através de uma linha de pressão estática, que está ligada a um orifício ou vários orifícios localizados na fuselagem ou seção do nariz. Em aeronaves equipadas com sistema de pressão estática poderá haver dois suspiros; um em cada lado do avião. Velocimetro Figura 12-12 Sistema pitot-estático com fontes de pressão separadas. Este procedimento compensará alguma possível variação estática causada por mudanças erradas na atitude do avião. Os dois orifícios são comumente conectados por uma junção do tipo “y”. Neste tipo de sistema, a obstrução da abertura do Pitot por gelo ou sujeira (ou esquecimento de remover a cobertura do Tubo de Pitot) afetará somente a indicação da velocidade aerodinâmica. = Tao pira paigaR do Elec Pa Gglotora aeda Eee ez são GSE ICS DEMO Degmo da Ninha aguecimen doa no alo, ER adE Lupascicager cães" CMEê Cao pitoto au Eonbtico Láltizetro E Yolocinctro vôlyutos xana Vaya a cobfe altermactva prénsão CEáCICS Jndicagoe da rasão de 4 Controlador da pressão am Elndicador do pressão Sfcronciol da eshino Tubo pigor do nel o sopiloto Dreno da aca, "aquecigos | chtitiio do pressão da cai” ma reessão estática CLID Pressão dinfntes Figura 12-13 Esquema de um pitot-estático usado em avião multimotor pressurizado. Um sistema de Pitot usado num avião pressurizado multimotor é mostrado na figura 12-13. Três unidades adicionais: controlador de pressão da cabine, instrumento de pressão diferencial da cabine e sistema de piloto automático estão integrados no sistema estático. Ambos sistemas são usados nas saídas estáticas, aquecidas ou não-aquecidas. Altímetros Há muitos tipos de altímetros em uso nas aeronaves hoje, entretanto eles são construídos no mesmo princípio básico de um barômetro aneróide. Ração der ajuste 12-10 Figura 12-14 Mecanismo de um altímetro. Eles todos dispõem de elementos sensíveis a mudanças de pressão (aneróides), que se expandem ou contraem com a mudança de pressão nos diferentes níveis de vôo. O coração de um altímetro é um mecanismo aneróide (figura 12-14). A expansão ou contração do aneróide com as mudanças de pressão move um sistema de articulação com os ponteiros, que assim indicam a pressão em números de altitude. Os altímetros são construídos com um material bimetálico, e como o próprio nome indica, este dispositivo é construído de 2 metais e executa a função de compensar o efeito que a temperatura tem nos metais do mecanismo do aneróide. A indicação de altitude pelos altimetros em uso corrente varia, desde o tipo de múltiplos ponteiros ao único e simples ponteiro, de um tipo digital e tipos mais simples. O mostrador de um altímetro típico está graduado com numerais de O a 09, conforme mostrado na figura 12-15. Figura 12-15 Altímetro. O movimento do elemento aneróide é transmitido através de engrenagens aos 3 ponteiros na face dos instrumentos. Esses ponteiros fazem com que o mostrador calibrado indique a altitude do avião. O ponteiro mais cuto indica a altitude em dezenas de 1.000 pés, o ponteiro intermediário em 1.000 pés, e o ponteiro mais longo em centenas de pés em incrementos de 20 pés. Uma escala barométrica localizada na face direita do instrumento pode ser calibrada por um botão localizado no lado inferior esquerdo do instrumento. A escala barométrica indica a pressão barométrica em polegadas de mercúrio. Como a pressão atmosférica muda continuamente, a escala barométrica deve ser sempre colocada de acordo com a pressão no local onde o altimetro indicará a altitude correta do avião acima do nível do mar. Quando o botão de ajuste de pressão é girado, a escala barométrica, os ponteiros e o elemento aneróide são movidos para alinhar o mecanismo do instrumento com o novo ajuste do altímetro . Duas marcas de ajuste interior e exterior indicam a pressão barométrica em pés de altitude. Elas operam em conjunto com a escala barométrica e as indicações são lidas no mostrador do altimetro. A marca exterior indica centenas de pés, a marca interior milhares de pés. Como há um limite para as graduações que podem ser ajustadas na escala barométrica, as marcas de ajuste são usadas quando a pressão barométrica a ser lida está fora dos limites da escala. 12-11 Erros de altímetros Os altímetros estão sujeitos a vários erros mecânicos. Um erro muito comum é que a escala não está corretamente orientada para as condições padrão de pressão. Os altímetros devem ser periodicamente verificados quanto a erros de escala nas câmaras de altitude, onde existem condições padrão. Outro erro mecânico é um erro produzido por inércia. Este erro é provocado quando a aeronave está mantendo uma determinada altitude por um período longo, e subitamente faz uma mudança muito grande de altitude. Um emo ou desvio, provocado no altímetro, é causado pelas propriedades elásticas do material com o qual é construído o instrumento. Este erro será eliminado com pequenas subidas ou descidas, ou após manter- se uma nova altitude por um período de tempo razoável. Em adição aos erros no mecanismo do altimetro, outro erro, chamado erro de instalação afeta a exatidão das indicações. O erro é causado pela mudança de alinhamento do respiro de pressão estática com o vento relativo. A mudança de alinhamento é causada pelas mudanças na velocidade da aeronave, ou seu ângulo de ataque em vôo, ou pela localização da saída estática (respiro) em um campo de distúrbio de ar (turbulência). A instalação não apropriada ou danos ao Tubo de Pitot também resultarão de indicações impróprias de altitude. Indicadores de razão de subida (Climb) O indicador de razão de subida ou velocidade vertical é um instrumento que mede a pressão diferencial, e indica a razão na qual o avião está subindo ou descendo (figura 12-16). O Indicador de razão de subida (Climb) está ligado ao sistema estático, e sente a razão de mudança na pressão estática. A mudança na razão de altitude, como mostrado no instrumento é positiva numa subida e negativa quando descendo em altitude. O ponteiro indicador move-se em qualquer direção desde o ponto zero, dependendo se o avião está indo para cima ou parabaixo. O ponteiro permanece em zero (posição horizontal) se o avião mantêm-se em vôo nivelado. Figura 12-16 Típico indicador de razão de subida e descida. Se o avião está ganhando altitude, o ponteiro move-se para cima de O até 6.000 pés por minuto, e se o avião move-se para baixo há uma indicação de O até 6.000 pés por minuto. O estojo do instrumento é selado, com a excesão de um pequeno orifício de conexão à linha estática do sistema Pitot. Dentro do estojo selado do indicador de subida há um diafragma com uma articulação, conectando a engrenagem ao ponteiro indicador. Ambos, o diafragma e o estojo, recebem ar em pressão atmosférica da linha estática. Quando a aeronave está no chão, ou em vôo nivelado, as pressões dentro do diafragma e do estojo do instrumento permanecem iguais, e o ponteiro indica 0. Quando a aeronave está subindo, a pressão do diafragma diminui, mas devido ao retardo de medição da passagem restrita dentro do instrumento, a pressão permanece maior e causa uma contração no diafragma. O movimento do diafragma atuará o mecanismo, levando o ponteiro a indicar uma razão de subida. Quando a aeronave está nivelada, a pressão no estojo do instrumento é a mesma pressão dentro do diafragma. O diafragma retorna a sua posição neutra e o ponteiro retorna a zero. Numa descida as condições de pressão são reversas. A pressão do diafragma, imediatamente torna-se maior que a pressão dentro do estojo do instrumento. O diafragma se expande e movimenta o mecanismo do ponteiro para indicar a razão de descida. Quando a aeronave está subindo ou descendo numa razão constante, uma razão definida entre a pressão do diafragma e a pressão do instrumento é mantida através da passagem calibrada restrita, que requer aproximadamente 6 a 9 segundos para equalizar ambas as pressões causando um retardo na leitura devida. Quaisquer mudanças súbitas ou abruptas na atitude da aeronave podem causar indicações errôneas devido à mudança repentina do fluxo de ar sobre os orifícios de estática. O Indicador Instantâneo de Razão de Subida é um desenvolvimento mais recente, que incorpora bombas de aceleração para eliminar as limitações associadas com o vazamento da calibração. Por exemplo, durante uma subida abrupta, a aceleração vertical faz com que as bombas forneçam um ar extra para o diafragma para estabilizar a pressão diferencial sem um tempo usual de retardo. Durante o nível de vôo com razão estável, e descidas estáveis, o instrumento opera da mesma maneira e princípios, como um indicador de subida convencional. Um sistema de ajuste a zero que pode ser controlado por um parafuso ou um botão permite o ajuste do ponteiro a zero. O ponteiro de um indicador de subida deverá indicar zero quando a aeronave estiver no solo, ou mantendo um nível de vôo de pressão constante. Indicador de velocidade aerodinâmica Indicadores de velocidade (velocímetro) são instrumentos de leitura sensíveis a pressão que medem a diferença entre as pressões dinâmica e estática, e apresentam tal diferença em número de velocidade indicada. Os velocimetros são construídos por diversos fabricantes e variam de acordo com sua construção mecânica, entretanto, a construção básica e o princípio de operação é o mesmo para todos os tipos. Os velocimetros (figura 12-17) são instrumentos sensíveis que medem a diferença de pressão e indicam imediatamente a diferença entre a pressões do ar de impacto e a pressão estática, que envolve uma aeronave em qualquer momento do vôo. Eixo do balanço depor Figura 12-17 Velocímetro. o Indicador de Velocidade Aerodinâmica (velocímetro) consiste, primariamente, de um diafragma metálico e sensível, cujos movimentos, resultando da diferença entre o ar de impacto e a pressão estática, são multiplicados por meio de engrenagens com molas, pinhões e um eixo para transformar um movimento do diafragma em movimento rotativo para o ponteiro, que indica velocidade do avião em medidas de nó ou milhas por hora. A maioria dos velocimetros são construídos para indicar as limitações de velocidade com uma simples verificação visual. Para que a velocidade nunca seja excedida, é indicada por uma linha radial vermelha. O arco amarelo no instrumento indica um limite onde o vôo deverá ser conduzido com cautela, e um arco branco é usado para indicar os limites de velocidade onde a operação do flape é permitida. Os números do mostrador usado nos diferentes tipos de velocímetro são indicativos 12-13 do tipo do avião nos quais eles são usados. Por exemplo: um velocimetro com um limite de O até 160 nós é comumente usado em muitos aviões leves. Outros tipos, tais como um indicador que limita a velocidade em 430 nós são usados nos aviões maiores e mais rápidos. Outro tipo de velocímetro em uso é aquele que indica a velocidade máxima permitida. O indicador inclui uma agulha de máxima velocidade permitida, que mostra uma diminuição da velocidade máxima, quando há um aumento de altitude. Este ponteiro opera com um diafragma extra no velocimetro que sente as mudanças em altitude, e indica estas mudanças na face do instrumento. TITE, so «M] Figura 12-18 Indicador de velocidade máxima permitida. Seu propósito é indicar a velocidade máxima permitida em qualquer altitude. O tipo de velocímetro conhecido como indicador de velocidade verdadeira é mostrado na figura 12-19. Figura 12-19 Indicador de velocidade verdadeira. Ele utiliza um aneróide, um diafragma de pressão diferencial e um diafragma com bulbo de temperatura que responde respectivamente a mudanças na pressão barométrica, pressão de impacto e temperatura do ar exterior. As | ações do diafragma | são mecanicamente interpretadas para indicar a velocidade verdadeira em nós. Um velocimetro típico, indicador de velocidade verdadeira, é projetado para indicar a velocidade do ar desde 1.000 pés abaixo do nível do mar até 50.000 pés acima do nível do mar, e em condições de temperatura do ar desde +40 graus até -60 graus centígrados. Indicador de número Mach Indicadores de número Mach ou maquimetros indicam a relação da velocidade do avião com a velocidade do som a uma altitude particular, e na temperatura existente a qualquer tempo durante o vôo. A construção de um maquimetro é muito similar âquela de um Velocimetro. 12-14 Figura 12-20 Maquímetros. Um maquimetro comumente contém um diafragma de pressão diferencial, que sente a pressão do tubo pitot; e um diafragma aneróide que sente a pressão estática dentro do instrumento. Por meios mecânicos, as mudanças nas pressões são indicadas no mostrador do instrumento de números Mach. O Maquimetro mostrado na figura 12- 20A é projetado para operar entre os limites de 0,3 a 1,0 Mach e em altitudes desde O até 50.000 pés. O maquimetro mostrado na figura 12-20B é construído para operar nos limites de 0,5 a 1,5, em altitudes acima de 50.000 pés. Indicadores combinados de velocímetro/maquímetro Indicadores combinados de velocimetro/maquímetro são disponíveis para aviões onde o espaço para os instrumentos é limitado e é desejável que se apresente informação num indicador combinado. Estes instrumentos indicam a velocidade, o número Mach e o Mach limite através de leituras do ar de impacto (pressão dinâmica) e pressões estáticas lidos através de aneróides. Estas unidades combinadas utilizam ponteiros duplos que mostram a velocidade aerodinâmica numa escala fixa e a indicação do número Mach numa escala rotativa. Um botão localizado na paite inferior do instrumento é disponível para mover um indicador até a referência de uma velocidade desejada. Um Indicador combinado de velocimetro/maquímetro é mostrado na figura 12-21. Limite Mach — Botão de ajuste Figura 12-21 Indicador combinado de velocimetro/maquímetro. MANUTENÇÃO DO SISTEMA DE PITOT ESTÁTICO As instruções específicas para manutenção, de qualquer sistema pitot estático são comumente detalhadas no manual de manutenção do construtor do avião, entretanto há algumas inspeções, procedimentos e precauções que devem ser observados que se aplicam a todos os sistemas em comum. Os tubos de pitot e suas conexões no avião devem ser inspecionados quanto a segurança de montagem e evidência de danos. Inspeções deverão ser feitas para assegurar que as conexões elétricas estão firmes. O orifício de entrada do tubo de pitot, os orifícios drenos e os orifícios estáticos, ou de entradas e saídas de pressões estáticas, devem ser inspecionados para assegurar que não estão obstruídos. O tamanho dos orifícios de dreno e pressão estática são aerodinamicamente críticos. Eles nunca devem ser limpos ou desobstruídos com ferramentas que podem causar modificação ou alargamento de seus orifícios. Os elementos de aquecimento deverão ser verificados quanto a seu funcionamento, 12-15 para assegurar que o tubo de pitot começa a aquecer sempre que seu botão é ligado. Se um medidor de ampéres ou medidor de corrente está instalado no circuito, uma leitura de corrente deverá ser medida. As inspeções a serem levadas em efeito nos instrumentos têm uma relação direta com a segurança, os defeitos visuais e o funcionamento adequado. O ajuste a zero dos ponteiros deve também ser verificado. Quando se proceder a inspeção do altímetro, a escala de pressão barométrica deve ser ajustada de forma que possa ser lida do campo onde se encontra a aeronave. Quando ajustada a essa pressão, o instrumento deverá indicar zero dentro de limites de tolerância especificados para o tipo instalado. Se nenhum ajuste for possível dentro de limites pré-determinados, o instrumento deverá ser substituído. Teste quanto a vazamentos no sistema de pitot estático Os sistemas pitot estático das aeronaves devem ser checados quanto a vazamentos após a instalação de qualquer componente, quando o mau funcionamento do sistema está em períodos especificados pelos regulamentos das autoridades competentes. O sistema de testar quanto a vazamento e o tipo de equipamento a ser usado, dependem do tipo do avião e seu sistema pitot estático. Em todos os casos, a pressão e a sucção devem ser aplicadas e aliviadas vagarosamente para evitar danos aos instrumentos. O método de testar consiste basicamente de aplicar pressão e sucção às entradas de pressão e aos respiros estáticos, respectivamente, usando um testador de vazamentos e adaptadores acoplados. A razão de vazamento deverá estar dentro da tolerância permitida e prescrita para o sistema. Os testes de vazamento também fornecem meios de checar se os instrumentos conectados a um sistema estão funcionando adequadamente, entretanto, um teste de vazamento não é utilizado como teste de calibração. Após executar um teste de vazamento, o sistema deve ser retornado a configuração normal de vôo. Se for necessário desconectar várias partes de um sistema é observado se todos os conectores, adaptadores, ou pedaços de fita adesiva foram removidos do sistema. INDICADORES DE INCLINAÇÃO E CURVA (“TURN AND BANK”) O indicador de inclinação e curva (Turn and Bank) figura 12- também indicado como “pau e bola”, ou curva e derrapagem, indica a execução correta de uma curva coordenada, e indica também a inclinação lateral de um avião em vôo. 2 LESS, , SR fé, PP ê o ES o) 15 Te O ad Taétader e quatro mímures, de curve N n o ê DA 4 SS Figura 12-22 Dois tipos de indicadores de curvas e inclinação. O ponteiro de indicação de curva é operado por um giroscópio movido por vácuo, por pressão de ar, ou por eletricidade. O ponteiro de indicação de curva indica a razão, em números de graus por segundo, na qual o avião está fazendo a curva sobre seu eixo vertical. Ele também fornece informação da quantidade de inclinação. O eixo de inclinação do giroscópio é montado horizontalmente, enquanto o giro roda ao redor do seu eixo. A precessão giroscópica leva o rotor a inclinar-se quando o avião também se inclina. Devido a direção da rotação, o giroscópio inclina-se sempre na direção oposta da qual o avião está girando, isto previne que o eixo de rotação esteja vertical à superfície da Terra. A ligação entre a montagem do giroscópio e a agulha do instrumento, chamado “mecanismo reverso”, faz com que a agulha indique a direção certa da curva. A energia para o giro elétrico deve ser fornecida, ou por uma corrente C.A. ou corrente C.C., do sistema elétrico do avião. O principal valor do giroscópio elétrico dos aviões mais leves é o fator segurança. Em aviões monomotores equipados com giros a vácuo, e indicadores de direção a vácuo, 12-16 a agulha do Turn and Bank é comumente operada por um giroscópio elétrico. No caso de falha no sistema de vácuo e perda dos dois instrumentos, o piloto ainda dispõe de um instrumento de reserva confiável para operação em emergência. Operado diretamente da corrente da bateria, o Turn and Bank elétrico é confiável enquanto a corrente elétrica estiver disponível, não importando o mau funcionamento de geradores ou sistema de vácuo . No instrumento elétrico, o giroscópio é um pequeno motor elétrico e pendular. Ambos os sistemas, movidos a eletricidade e movidos a vácuo, são projetados para utilizar o mesmo princípio giroscópico, para indicar a inclinação do avião em vôo. A energia para o sistema movido por sucção é regulada por uma válvula restritora instalada entre a linha de pressão principal e o instrumento, de forma a produzir uma desejada sucção e velocidade no rotor. Como a agulha mede a força da precessão, o vácuo excessivamente alto ou baixo poderia resultar em operação da agulha de forma indesejável. Para uma específica razão de curva, o vácuo baixo produz uma rotação menor do giroscópio e, portanto, menor deflexão da agulha para essa especifica condição de curva. O contrário é verdade para a condição de vácuo muito alto. Dos dois tipos de agulha indicadoras de curva mostrada na figura 12-22, o indicador de 2 minutos de curva é o mais antigo. Se o instrumento está calibrado acuradamente, uma deflexão na agulha equivalente a sua largura significa, no indicador de 2 minutos, que o avião está fazendo uma curva à razão de 3 graus por segundo ou curva padrão (2 minutos para uma curva de 360 graus). No indicador de 4 minutos, uma deflexão da agulha para qualquer lado equivalente a largura da agulha, indica que a aeronave está curvando a 1,5 graus por segundo ou metade da razão da curva padrão (4 minutos para uma curva de 360 graus). Um indicador de curva de 4 minutos foi desenvolvido especialmente para aviões de alta velocidade. O indicador de derrapagem (bola) é uma parte do instrumento que consiste num simples inclinômetro que é um tubo de vidro selado contendo querosene dentro do qual oscila uma bola preta de ágata ou uma esfera comum de aço que está livre para mover-se dentro do tubo. O — fluido provoca uma ação amortecedora, assegurando movimentos suaves da bola para ambos os lados. O tubo de vidro é curvado de forma que numa posição horizontal a bola tem a tendência de permanecer sempre no ponto mais baixo. Uma projeção do lado esquerdo do tubo contém uma bolha de ar, para compensar a expansão do fluido durante mudanças na temperatura. Dois pedaços de arame envolvendo o tubo de vidro fixam o tubo à caixa de instrumento, e, por sua posição, também serve como marca de referência para indicar a posição da bola no tubo quando em 1epouso. Durante vôo reto e horizontal coordenado, a força da gravidade faz com que a bola permaneça na parte mais baixa do tubo centralizado entre os arames de referência. Práticas de manutenção os indicadores de curva para Erros de indicações no indicador de curva aparecem usualmente devido à velocidade excessiva ou insuficiente ou, ainda, ajustamento impreciso da mola de calibração. Não existe nenhum teste operacional prático, ou verificação desse instrumento, que não seja notar visualmente que o ponteiro indicador e a bola estão centralizados. SISTEMA DE TIPO “SINCRO” INDICAÇÃO REMOTA Um sistema Sincro é um sistema elétrico usado para transmitir informação de um ponto para outro. A maioria dos instrumentos indicativos de posição são projetados sobre um sistema Sincro. A palavra "Sincro" é uma forma abreviada de Sincronia e refere-se a qualquer dos dispositivos elétricos capazes de medir e indicar uma deflexão angular. Sistemas Sincro são usados como indicadores remotos de posição para: trem de pouso e sistemas de flape, nos sistemas de piloto automático, nos sistemas de radar e muitas outras aplicações de indicações remotas. 12-17 Há diferentes tipos de sistemas Sincro e os 3 sistemas mais comuns são: Autosyn, Celsyn e Magnesyn. Esses sistemas são similares na sua construção, e todos operam de forma idêntica, eletricamente e nos princípios mecânicos. Sistemas Selsyn C.C. Os sistemas Selsyn C.C. fazem parte de um método elétrico, amplamente usado para indicar a condição mecânica remota. Especificamente, os sistemas Selsyn CC. podem ser usados para mostrar o movimento e a posição do trem de pouso retrátil dos flapes da asa, nos flapes do motor (Cowlflaps) nas portas de reaquecimento do óleo ou partes similares móveis do avião. O sistema Selsyn consiste de um transmissor, um indicador e a cablagem de conexão. A voltagem necessária para operar o sistema Selsyn é fornecida pelo sistema elétrico do avião. Um sistema Selsyn mostrado esquematicamente na figura 12-23. O transmissor consiste de uma bobina circular e um braço de contato rotativo. O braço rotativo de contato gira em um eixo no centro da bobina de resistência. As duas pontas do braço ou escova sempre tocam a bobina em lados opostos. O eixo no qual o braço de contato está ligado se estende através do final do transmissor, e está ligado a unidades (flapes, trem de pouso, etc) cuja posição deve ser transmitida. é Todicader Figura 12-23 Diafragma esquemático de um sistema Selsyn de C.C. O transmissor está usualmente ligado à unidade através de uma conexão mecânica. Assim que se move, ela causa ao eixo do transmissor um movimento. Desta forma, o braço pode girar para que a voltagem seja transmitida em qualquer dos dois pontos onde o braço toca a circunferência da bobina. Como a voltagem das espiras do transmissor é variada, a distribuição de corrente nas bobinas do indicador também varia, e a direção do campo magnético resultante, através do indicador, é mudada. O campo magnético indica uma determinada posição do braço ao transmissor. Sempre que o campo magnético muda de posição, o motor polarizado gira e alinha-se com a nova posição do campo. O rotor, então, indica a posição do braço transmissor. Quando o sistema Selsyn C.C. é usado para indicar a posição do trem de pouso , um circuito adicional é conectado a bobina transmissora que age como um circuito de trava. O propósito desse circuito é mostrar quando o trem de pouso está recolhido e travado, ou abaixado e travado. Chaves de trava são mostradas, conectadas num sistema de 3 fios na figura 12-24. Figura 12-24 Sistema Selsyn de três fios com dupla chave de trava. Um resistor está conectado entre uma das pontas do transmissor, e uma chave de trava individual na outra ponta. Quando qualquer chave de trava é fechada, a resistência é adicionada ao circuito transmissor para causar desequilíbrio em uma sessão da bobina transmissora. Esse desequilíbrio causa uma mudança no fluxo da corrente através das espirais da bobina. O movimento resultante do ponteiro indicador mostra que a chave de trava foi, então, fechada. A chave de trava está mecanicamente conectada às travas de trem em cima ou embaixo, e quando as travas do trem de pouso travam em cima ou embaixo, fecha o interruptor conectado ao transmissor Selsyn. Este 12-18 travamento do trem de pouso é indicador. repetido no Sistema magnesyn O Sistema Magnesyn é um sistema elétrico de sincronia própria, usado para transmitir a direção de um campo magnético, de uma bobina para outra. O sistema de posição Magnesyn é essencialmente um método de medir a quantidade de movimento de tais elementos, como: os Flapes da asa e flapes de refrigeração do motor, compensadores, o trem de pouso, ou outras superfícies de controle. As duas unidades principais do sistema são: o transmissor e o indicador (figura 12-25 ). Força E.4. Figura 12-25 Sistema Magnesyn de indicação de posição. No sistema transmissor Magnesyn, um anel de ferro é colocado ao redor de um magneto permanente, de forma que a maioria das linhas de força magnéticas passem através do anel. Este núcleo circular de material magnético é provido de uma bobina elétrica com uma espiral muito fina. A figura 12-26 mostra o esquema elétrico de um sistema Magnesyn. O núcleo circular de material magnético e a bobina são os componentes essenciais de um Magnesyn. O rotor consiste de um permanente magneto (imã). Figura 12-26 Sistema magnesyn. O movimento da superficie de controle do avião causa um movimento proporcional do eixo transmissor. Este, por sua vez, causa deslocamento rotativo do magneto. As variações de voltagem são sentidas no Magnesyn, dependendo da posição do magneto. A voltagem é transmitida ao indicador Magnesyn, que indica em um mostrador os valores recebidos do transmissor. O indicador consiste inicialmente de um Magnesyn, um mostrador graduado e um ponteiro. O ponteiro está ligado ao eixo e o eixo está ligado ao magneto, portanto, o movimento do magneto causa um movimento ao ponteiro. INDICAÇÕES REMOTAS DE PRESSÃO DE ÓLEO E DE COMBUSTÍVEL Indicações remotas de pressão de óleo e combustível podem ser convenientemente obtidas através do uso de vários sistemas sincro. O tipo de sistema sincro usado pode ser o mesmo, seja para óleo ou para medir pressão de combustível, entretanto, um sistema de medir pressão de Óleo não é usualmente intercambiável com um transmissor para medir combustível. Um sistema típico de indicar a pressão do óleo é mostrado na figura 12-27. Uma mudança na pressão do óleo introduzida no transmissor sincro causa um sinal elétrico para ser transmitido através da cablagem, interconectada ao receptor do sincro. Este sinal faz com que o rotor receptor e o indicador se movam a uma distância proporcional a quantidade de pressão exercida pelo óleo. mesa tetat Frscipaha Besteiras» Zranesonoe de perosão de doa faster) Ad e qm esti th QL sro Figura 12-27 Sistema de indicação remota (sincro) da pressão de óleo. 12-19 A maioria dos transmissores de pressão de óleo são compostos de duas partes: um mecanismo para medir a pressão; e uma montagem sincro para indicar a pressão. A pressão do óleo causa um deslocamento linear no rotor do sincro. A quantidade de deslocamento é proporcional a pressão, e as variações de voltagens são indicadas pelo estator sincro. Estas voltagens são transmitidas para o indicador sincro. Em algumas instalações, indicadores duplos são usados para obter indicações das duas fontes. Em algumas instalações, tanto os transmissores de indicação de óleo e de combustível são ligados através de uma junção, operando um sincro de pressão de óleo e pressão de gasolina (duplo lado a lado ), entretanto, combinando ambos indicadores em apenas um instrumento. SISTEMA DE QUANTIDADE COMBUSTÍVEL TIPO CAPACITOR DE O sistema de medir combustível do tipo capacitor é um dispositivo eletrônico de medir combustível, que determina com exatidão o peso do combustível nos tanques de um avião. Os componentes básicos do sistema são: um indicador, uma sonda do tanque, uma unidade ponte e um amplificador. Em alguns sistemas, a unidade ponte e o amplificador são uma só unidade montada na mesma caixa. Sistemas mais modernos foram projetados com a unidade ponte e um amplificador transistorizado, construído dentro do estojo do instrumento. O indicador de quantidade de combustível mostrado na figura 12-28 é um instrumento selado, auto balanceado, contendo um motor, um conjunto de ponteiro, amplificador transistorizado, circuito ponte e potenciômetros de ajuste. Figura 12-28 Indicador e sonda de um sistema de indicação de combustível tipo capacitor. Uma mudança na quantidade de combustível de um tanque causa uma mudança na capacitância da unidade do tanque. Essa unidade do tanque faz parte de um circuito de capacitância. O sinal de voltagem resultante do desequilíbrio desse circuito é amplificado sensitivamente na unidade de força; este sinal energiza um motor de indução, aciona um potenciometro na direção apropriada para reequilibrar o circuito, e ao mesmo tempo posiciona um ponteiro indicador, mostrando a quantidade de combustível remanescente no tanque. Uma versão simplificada de uma unidade do tanque é mostrada na figura 12-29. A capacitância de um capacitor depende de três fatores: 1) A área das chapas; 2) A distância entre as chapas; 3) O dielétrico constante do material entre as chapas. 12-29 Circuito simplificado. O único fator variável da unidade do tanque é o dielétrico do material entre as chapas. Quando o tanque está cheio, o material dielétrico é todo combustível. Sua constante dielétrica é cerca de 2,07 a 0ºC comparado a um dielétrico constante de 1 para o ar. Quando um tanque está com combustível até a metade existe ar entre as metades superiores das placas, e combustível entre as placas em sua parte inferior. Assim, o capacitor terá menor capacitância do que tinha antes quando o tanque estava cheio. Quando o tanque está vazio, haverá somente ar entre as placas e, consequentemente, a capacitância é ainda menor. Qualquer mudança na quantidade de combustível entre o tanque cheio e o tanque vazio provoca uma mudança correspondente na capacitância. Um circuito de capacitância simplificado é mostrado na figura 12-30. O capacitor do tanque de combustível e um capacitor de referência fixo estão conectados em séries, através de uma bobina transformadora secundária. Um voltímetro está conectado do centro da bobina do transformador até um ponto entre os dois capacitores. Figura tanque-capacitância Uapacitor do Tanque —, Figura 12-30 Circuito ponte de capacitância, simplificado. Se as duas capacitâncias são iguais a queda de voltagem será igual, e a voltagem entre o centro e o ponto "P" será zero. Assim que a quantidade de combustível aumenta, a capacitância da unidade do tanque aumenta causando maior fluxo de corrente na unidade do tanque e no circuito. Isto causará a existência de uma voltagem através do voltimetro, que está ligado em fase com a voltagem aplicada ao transformador. Se a quantidade do tanque diminui, haverá um menor fluxo da corrente no lado do tanque. A voltagem através do voltimetro está agora fora de fase com a voltagem aplicada ao transformador. Em um instrumento atual tipo capacitor, a informação para o amplificador de dois estágios está conectada em lugar do voltímetro. Ele amplifica o sinal de um desbalanceamento na unidade ponte. A saída do amplificador energiza uma bobina no motor indicador de duas fases. A outra bobina motor, chamada "Fase de Linha", está constantemente energizada pela mesma Porenciômetro calfiraga “ça interruptor da testa pa a “a nov. 400 Hz voltagem que é aplicada ao transformador no circuito ponte, mas sua fase está desalinhada 90º por um capacitor. Como resultado, o motor indicador é sensível a fase, isto é, ele vai operar em qualquer direção, dependendo se a capacitância da unidade do tanque está aumentando ou diminuindo. Quando a capacitância do tanque aumenta ou diminu, devido a mudança na quantidade de combustível, é necessário reajustar o circuito ponte para uma condição de balanceamento, de forma que o motor indicador não continue mudando a posição da agulha indicadora. Isto é conseguido por um potenciômetro balanceador, conectado através da metade do transformador secundário, conforme mostrado na figura 12-31. Fão blindudo Fão sem blindagem Ampla Motor Tase de Linha —44 1 o Ê Co retcacia tro ge equilibrio 7. Potenciênêtro 3 calibrado "eheion Figura 12-31 Circuito de ponte de equilíbrio próprio. O motor indicador move o braço do potenciômetro na direção necessária para manter equilíbrio continuo na ponte. O circuito mostrado na figura 12-31 é um circuito de ponte com equilíbrio próprio. Um potenciômetro “vazio” e um calibrado "cheio" estão ligados através das paites do transformador secundário em pontas opostas da bobina. Estes potenciômetros podem ser ajustados para equilibrar as voltagens da ponte sobre um sistema completo, de alcance de capacitância, de vazio até completamente cheio de um específico sistema. Em algumas instalações onde o indicador mostra o conteúdo de somente um tanque, e onde o tanque é mais ou menos simétrico, uma unidade é o suficiente, entretanto para maior exatidão, em tanques de forma peculiar, duas ou mais unidades são ligadas em paralelo para minimizar o efeito de mudanças na atitude do avião e o deslocamento do combustível nos tanques. SISTEMAS DE INDICAÇÃO DO ÂNGULO DE ATAQUE O sistema de indicação do ângulo de ataque detecta o ângulo de ataque do avião de um ponto na lateral da fuselagem, e fornece informações para o controle e atuação de outras unidades e sistemas no avião. Os sinais são fornecidos para operar um indicador de ângulo de ataque (figura 12-32) localizado no painel de instrumentos, onde uma indicação visual contínua do atual ângulo de ataque é mostrada. Um sistema típico de ângulo de ataque fornece sinais elétricos para a operação de um atuador dos pedais do leme, o que alerta o operador de um estol iminente quando o avião está se aproximando de um ângulo de ataque crítico. Chaves elétricas são atuadas no indicador de ângulo de ataque a vários ângulos de ataque pré-estabelecidos Y É Porafuso de ajuste (a) Indicador Teaneniesor Figura 12-32 Sistema de indicação do ângulo de ataque. .O sistema indicador de ângulo de ataque consiste de um detector (transmissor) da direção de corrente de ar (figura 12-32B) e um indicador localizado no painel de instrumentos. O detector de direção de corrente de ar contém um elemento sensitivo que mede a direção local da corrente de ar, relativo ao ângulo do ataque verdadeiro, detectando a diferença angular entre o fluxo de ar local e um ponto de referência na fuselagem do avião. O elemento sensível opera em conjunção com o circuito ponte balanceado que converte as posições da antena em sinais elétricos. A operação de sistema indicativo de ângulos de ataque está baseada na detecção de pressão diferencial, no ponto onde a corrente de ar está fluindo numa direção que não é paralela ao verdadeiro ângulo de ataque do avião. Esta pressão diferencial é causada por mudanças no fluxo de ar ao redor da unidade antena. A antena estende-se através fuselagem do avião para o vento relativo. da O final exposto da antena contém duas fendas paralelas que detectam a pressão diferencial do fluxo de ar (figura 12-33). O ar que passa pelas fendas é transmitido através de duas passagens separadas, para compartimentos separados em uma câmara, onde existem dispositivos em forma de remo. E Passagem de ar Rotilmatds Figura 12-33 Detector da direção do fluxo de ar. Qualquer pressão diferencial causada por desalinhamento da antena em relação a direção do fluxo de ar causará uma rotação nos remos. Os temos movendo-se rodarão a antena através de um mecanismo, até que a diferencial de pressão seja zero. Isto ocorre quando as fendas estão simétricas com a direção da corrente de ar. Dois potenciômetros eletricamente separados rodando com a antena fornecerão sinais para indicações remotas. A posição da antena ou rotação é convertida em um sinal elétrico por um dos potenciômetros, que é o componente transmissor de um circuito auto- ajustável. Quando um ângulo de ataque do avião é mudado e, subsequentemente, a posição do potenciômetro transmissor é alterada, um erro de voltagem existe entre o potenciômetro transmissor e o potenciômetro receptor. Fluxos de corrente através de um relé sensível polarizado rodam um servo motor no indicador. O servo motor energiza o receptor potenciômetro na direção exigida para reduzir a voltagem, e restaurar o circuito a uma condução eletricamente equilibrada. O ponteiro indicador está ligado, e se move com o receptor potenciômetro para indicar no mostrador o ângulo de ataque telativo. INDICADOR DE RPM (TACÔMETRO) O indicador tacômetro é um instrumento para indicar a velocidade do eixo de manivelas de um motor a pistão, e a velocidade do eixo principal de uma turbina. Os mostradores de um tacômetro usados com motores a pistão são calibrados em RPM (rotações por minuto). Aqueles tacômetros utilizados para turbinas são calibrados em porcentagem de RPM, sendo usados a partir da rotação de decolagem. A figura 12-34 mostra um indicador típico para cada um dos indicadores descritos. Há dois tipos de sistema de tacômetro em amplo uso hoje em dia. Figura 12-34 Tacômetros de rpm). (Indicadores 1) O sistema indicador mecânico; 2) O sistema indicador elétrico. Sistema indicador mecânico O sistema indicador mecânico consiste de um indicador conectado ao motor por um eixo flexível de tração. O indicador contém um contrapeso acoplado ao mecanismo que aciona um ponteiro. Quando o eixo gira, forças centrífugas agem nos contrapesos e os movem para uma posição angular. Esta posição angular varia com a rotação do motor. O movimento dos contrapesos é transmitido através do mecanismo de engrenagens ao ponteiro. O ponteiro gira para indicar a RPM do motor no indicador Tacômetro. Sistema de indicação elétrico Um número de diferentes tipos e tamanhos de geradores de Tacômetro e indicador são usados em sistemas elétricos de aeronaves. Geralmente, os vários tipos de indicadores de tacômetro e geradores operam nos mesmos princípios básicos. Assim, o sistema descrito será representativo da maioria dos sistemas de tacômetros elétricos. As instruções dos fabricantes deverão sempre ser consultadas para um detalhe específico de um tacômetro. O sistema típico de tacômetro é um gerador C.A. de 3 fases, acoplado ao motor do avião e conectado eletricamente a um indicador, montado no painel de instrumentos. Estas duas unidades são conectadas por uma cablagem elétrica. O gerador transmite força de 3 fases ao motor sincro no indicador. A freqiúência da força transmitida é proporcional a rotação do motor. Através do principio de arrasto magnético, o indicador fornece uma indicação muito precisa da velocidade do motor. Gerador de Tacômetros são unidades compactas, pequenas, geralmente, e disponíveis em 3 tipos: FLANGE PLANO PORCA ROTATIVA PORCA FIXA Estes nomes são obtidos através do tipo de montagem usada na instalação do gerador ao motor. O gerador de Tacômetro tipo Flange plana (figura 12-36A), é construído com uma blindagem num dos lados, projetada para permitir a instalação do gerador a uma placa no corpo do motor, ou na Caixa de acessórios da turbina com 4 parafusos. O gerador tipo Porca Rotativa é construído com uma porca na montagem, e está livre para girar em relação ao resto do instrumento. Este tipo de gerador pode ser seguro e imóvel enquanto a porca de montagem é aparafusada no lugar. O gerador do Tacômetro tipo Porca fixa (fig. 12-36B) é construído com uma porca de montagem instalada em uma das blindagens na lateral do gerador. A porca de montagem é uma parte rígida do instrumento, e o gerador inteiro deve ser girado para aparafusar a porca no seu lugar junto ao motor. Tipo porca fixa Figura 12-36 Gerador de Tacômetro. O Tacômetro duplo consiste de duas unidades indicadoras de tacômetro montadas no instrumento único. Os ponteiros indicadores mostram simultaneamente num mostrador único, a rotação de dois motores. Alguns indicadores de rotação são equipados com um mostrador que indica a hora de vôo, usualmente localizado na área inferior do mostrador, bem abaixo do ponteiro central. Tacômetros duplos também são colocados no mesmo instrumento com um sincroscópio para vários propósitos. Um destes, o tacômetro de helicóptero com sincroscópio, é um instrumento que indica simultaneamente a velocidade de rotação do motor principal e a velocidade de rotação do rotor, e o deslizamento do rotor devido ao mal funcionamento da fricção ou velocidade excessiva do rotor, quando a fricção for desengajada em vôo. A velocidade de ambos (o eixo do rotor e o eixo da turbina), é indicada por um tacômetro regular duplo, e o deslizamento é indicado num sincroscópio (figura 12-37). Figura 12-37 Tacômetro de helicóptero com sincroscópio. MANUTENÇÃO DOS TACÔMETROS (CONTAGIROS) Os indicadores dos tacômetros devem ser examinados quanto a vidros frouxos, marcas de escala apagadas ou ponteiros soltos. A diferença nas indicações entre as leituras obtidas, antes e após o leve bater do instrumento, não poderão exceder mais ou menos 15 RPM. Este valor pode variar dependendo da tolerância estabelecida pelo fabricante do indicador. Ambos, o gerador do tacômetro e o indicador, deverão ser inspecionados quanto a firmeza das conexões mecânicas e elétricas, segurança da montagem e condição geral. Para procedimentos detalhados de manutenção, as instruções do fabricante deverão sempre ser consultadas. Quando um motor equipado com um tacômetro elétrico está funcionando em rotação mínima, os ponteiros indicadores do tacômetro podem flutuar e ter uma leitura baixa. Isto é uma indicação de que o motor sincro não está sincronizado com a informação que é obtida no gerador de sinal. A medida que a velocidade do motor aumenta, ele deverá sincronizar e registrar corretamente a rotação. A rotação na qual a sincronização ocorre vai variar com o projeto do sistema tacômetro. Se os ponteiros do instrumento oscilam a velocidade acima do valor de sincronização, é verificado-se a oscilação total não excede a tolerância permissível. Se a oscilação exceder a tolerância, verifica-se se é o instrumento ou outro dos componentes que está falhando. Oscilação nos indicadores podem ocorrer em um sistema de indicação mecânica, se o cabo flexível de tração do indicador está sofrendo oscilações. O cabo flexível deve ser fixado em intervalos frequentes, para a prevenção de oscilações. Quando se instala indicadores do tipo mecânico, o “teleflex” deve ter espaço adequado através do painel. Quaisquer dobras necessárias para colocar o cabo através do painel, não poderão causar esforço na instalação do instrumento no painel. Evita-se dobras muito acentuadas no cabo transmissor. Um cabo transmissor instalado inadequadamente pode causar uma pane no indicador, ou fornecer informação incorreta. SINCROSCÓPIO O sincroscópio é um instrumento que indica se dois (ou mais) motores estão sincronizados, isto é, se eles estão operando na mesma R.P.M. O instrumento consiste de um pequeno motor elétrico, que recebe corrente elétrica do gerador do tacômetro de ambos os motores. O sincroscópio é projetado de forma quea corrente do motor que gira mais depressa,controla a direção na qual o motor do sincroscópio gira. Se ambos os motores estão operando a mesma velocidade, o motor do sincroscópio não opera. Se, entretanto, um motor está operando mais rápido que o outro, o sinal do seu gerador obrigará o motor do sincroscópio a girar em uma determinada direção. Se a velocidade do outro motor então torna-se maior que aquela do primeiro motor, o sinal de seu gerador, então, causará ao motor do sincroscópio a reversão na direção oposta. O motor do sincroscópio está conectado através de um eixo, a um ponteiro de duas pontas no mostrador do instrumento (figura 12.38). É necessário designar um dos dois motores como motor mestre, para que as indicações do sincroscópio possam ser úteis. Figura 12-38 Mostrador do sincroscópio. As leituras do mostrador com rotação no sentido anti-horário do ponteiro indicam devagar; e o movimento no sentido horário indicando rápido refere-se a operação do segundo motor, em relação a velocidade do motor mestre. Para aeronaves com mais do que dois motores poderão ser usados sincroscópios adicionais. Um motor é designado como motor mestre, e os sincroscópios são conectados entre seus tacômetros, e àqueles de cada um dos motores individuais. Em uma instalação completa deste tipo, deve haver um instrumento a menos do número de motores, desde que o motor mestre seja comum a todos os pares. Um tipo de sincroscópio para quadrimotores é um instrumento especial que, efetivamente, são três sincroscópios individuais em um só instrumento (figura 12-39). O rotor de cada sincroscópio está eletricamente conectado ao gerador do tacômetro do motor, designado como mestre, enquanto cada estator está conectado a cada um dos tacômetros dos outros motores. Existem, três ponteiros, cada um indicando a velocidade relativa do motor número 2, 3 ou motor 4, conforme indicado na figura 1240.
Material excelente. Parabéns
PARABÉNS MUITO BOM...
sou estudante de celula e achei muito bom!
parabens gostei muito
Que baita resumo de instrumentos de aviação, valeu e obrigado!
Esta é apenas uma pré-visualização
3 mostrados em 55 páginas