Apodastila Fundações, Notas de estudo de Cultura
rute-quelvia-7
rute-quelvia-7

Apodastila Fundações, Notas de estudo de Cultura

53 páginas
50Números de download
1000+Número de visitas
Descrição
Fundações
100 pontos
Pontos de download necessários para baixar
este documento
Baixar o documento
Pré-visualização3 páginas / 53
Esta é apenas uma pré-visualização
3 mostrados em 53 páginas
Esta é apenas uma pré-visualização
3 mostrados em 53 páginas
Esta é apenas uma pré-visualização
3 mostrados em 53 páginas
Esta é apenas uma pré-visualização
3 mostrados em 53 páginas
Microsoft Word - APOSTILA DE FUNDAÇÕES - 1.1-2002.doc

FUNDAÇÕES

SAP0653 – Tecnologia das Construções II

PROFESSORES: MÁRCIO M. FABRÍCIO JOÃO A. ROSSIGNOLO

ii

SUMÁRIO

1. TIPOS DE FUNDAÇÕES..............................................................................1

1.1 Fundações Rasas ou Diretas (H ≤ B) ........................................................................1

1.1.1. Blocos de Fundação ........................................................................................1

1.1.2. Sapatas de Fundação ......................................................................................2

1.1.3. Radier............................................................................................................2

1.2. FUNDAÇÕES PROFUNDAS......................................................................................3

1.2.1. Estacas ..........................................................................................................3

1.2.2.1. Moldadas “in-loco” .......................................................................................3

1.2.3. Tubulões ......................................................................................................15

2. CAPACIDADE DE CARGA DE FUNDAÇÃO DIRETA ...........................................18

2.1. Fórmulas de Capacidade de Carga........................................................................19

2.1.1. Fórmula Geral de Terzaghi (1943 ) .................................................................19

2.1.2. Fórmula de Skempton (1951) - Argilas............................................................21

2.2. Prova de Carga em Fundação Direta ou Rasa ........................................................22

2.3. Influência das Dimensões das Fundações nos Resultados de Provas de Carga..........25

2.4. Nos Resultados das Fórmulas de Capacidade de Carga...........................................27

2.4.1. Argilas .........................................................................................................27

2.4.2. Areias ..........................................................................................................28

3. RECALQUES DE FUNDAÇÕES DIRETAS........................................................28

3.1. Recalques de Estruturas ......................................................................................29

3.2. Efeito de Recalques em Estruturas .......................................................................30

3.2.1.Recalques Admissíveis das Estruturas ..............................................................31

3.2.2. Causas de Recalques.....................................................................................31

3.2.3. Recalques Limites (Bjerrum – 1963) ...............................................................32

3.3. Pressões de Contato e Recalques .........................................................................33

3.3.1. Solos Arenosos .............................................................................................33

3.3.2. Solos Argilosos .............................................................................................34

3.4. Cálculo dos Recalques .........................................................................................35

3.4.1 Recalques por Adensamento – Solos Argilosos .................................................36

iii

3.4.2. Recalque Elástico ..........................................................................................37

4. DIMENSIONAMENTO DE FUNDAÇÕES POR SAPATAS ......................................39

4.1.Sapatas Isoladas..................................................................................................40

4.2. Sapatas Associadas .............................................................................................43

4.3. Sapatas de Divisa................................................................................................44

1

1. TIPOS DE FUNDAÇÕES

• Fundações Rasas ou Diretas

• Fundações Profundas

1.1 FUNDAÇÕES RASAS OU DIRETAS (H ≤ B)

Elementos de fundação em que a carga é transmitida ao terreno, predominantemente pelas

pressões distribuídas sob a base da fundação, e em que a profundidade de assentamento

em relação ao terreno adjacente é inferior a duas vezes a menor dimensão da fundação (B).

Incluem-se neste tipo de fundação as sapatas, os blocos, os radiers, as sapatas associadas,

as vigas de fundação e as sapatas corridas.

Para o caso de fundações apoiadas em solos de elevada porosidade, não saturados, deve ser

analisada a possibilidade de colapso por encharcamento, pois estes solos são

potencialmente colapsíveis. Em princípio devem ser evitadas fundações superficiais

apoiadas neste solo, a não ser que sejam feitos estudos considerando-se as tensões a serem

aplicadas pelas fundações e a possibilidade de encharcamento do solo.

1.1.1. BLOCOS DE FUNDAÇÃO

Figura 1.1 – Bloco escalonado.

Blocos de fundação → Assumem a forma de bloco escalonado, ou pedestal, ou de um tronco

de cone. Alturas relativamente grandes e resistem principalmente por compressão.

2

1.1.2. SAPATAS DE FUNDAÇÃO

Figura 1.2 – Sapata isolada.

Sapatas (isoladas ou associadas) →. São elementos de apoio de concreto, de menor altura

que os blocos, que resistem principalmente por flexão.

Sapatas podem ser:

- circulares - (B = ∅)

- quadradas - ( L = B )

- retangulares - ( L > B ) e ( L ≤ 3B ou L ≤ 5B )

- corridas - ( L > 3B ou L > 5B )

1.1.3. RADIER

Quando todos pilares de uma estrutura transmitirem as cargas ao solo através de uma única

sapata. Este tipo de fundação envolve grande volume de concreto, é relativamente onerosa

e de difícil execução. Quando a área das sapatas ocuparem cerca de 70 % da área coberta

pela construção ou quando se deseja reduzir ao máximo os recalques diferenciais.

Figura 1.3 – Radier.

3

1.2. FUNDAÇÕES PROFUNDAS

1.2.1. ESTACAS

Elementos bem mais esbeltos que os tubulões, caracterizados pelo grande comprimento e

pequena secção transversal. São implantados no terreno por equipamento situado à

superfície. São em geral utilizados em grupo, solidarizadas por um bloco rígido de concreto

armado ( bloco de caroamento).

P ≤ RL + RP onde RL = Resistência Lateral e RP = Resistência de Ponta

Estacas quanto ao carregamento: Ponta, Atrito, Ação Mista, Estacas de Compactação,

Estacas de Tração e Estacas de Ancoragem

1.2.2.1. MOLDADAS “IN-LOCO”

1.2.2.1.1. ESTACA ESCAVADA MECANICAMENTE (S / LAMA)

Figura 1.4 – Caminhão com perfuratriz.

- Acima do N.A.

- Perfuratrizes rotativas

- Profundidades até 30m

- Diâmetros de 0,20 a 1,70m (comum até 0,50m)

4

Figura 1.4 – Detalhe do elemento de escavação.

1.2.2.1.2. ESTACA ESCAVADA (C/LAMA BENTONÍTICA)

A lama tem a finalidade da dar suporte a escavação. Existem dois tipos: estacões (circulares

φ=0,6 a 2,0m – perfuradas ou escavadas) e barretes ou diafragma (retangular ou alongadas,

escavadas com “clam-shells” - Figura 1.5).

Processo executivo:

a) Escavação e preenchimento simultâneo da estaca com lama bentonítica previamente

preparada;

b) Colocação da armadura dentro da escavação cheia de lama;

c) Lançamento do concreto, de baixo para cima, através de tubo de concretagem

(tremonha)

5

Fatores que afetam a escavação:

i) Condições do subsolo (matacões, solos muito permeáveis, camadas duras etc);

ii) Lençol freático (NA muito alto dificulta a escavação);

iii) Lama bentonítica (qualidade);

iv) Equipamentos e plataforma de trabalho (bom estado de conservação);

v) Armaduras (rígidas)

Figura 1.5 – Clam-shell

1.2.2.1.3. ESTACA RAIZ

São aquelas em que se aplicam injeções de ar comprimido imediatamente após a moldagem

do fuste e no topo do mesmo, concomitantemente a remoção do revestimento. Neste tipo de

estaca não se utiliza concreto e sim argamassa.

6

Figura 1.6 – Processo executivo de estaca raiz.

1.2.2.1.4. ESTACA STRAUSS

Duas fases: perfuração (sonda ou piteira), colocação do tubo de revestimento recuperável

(simultaneamente) e lançamento do concreto. A concretagem é feita com apiloamento e

retirada da tubulação (guincho manual ou mecânico). Diâmetros de 0,25 a 0,62m.

Vantagens:

- Ausência de trepidação;

- Facilidade de locomoção dentro da obra;

- Possibilidade de verificar corpos estranhos no solo;

- Execução próximo à divisa.

7

Cuidados:

• Quando não conseguir esgotar água do furo não deve executar;

• Presença de argilas muitos moles e areias submersas;

• Retirada do tubo.

Figura 1.7 – Execução de estaca Strauss.

1.2.2.1.5. ESTACA APILOADA

Também conhecida como soquetão ou estaca pilão. Utiliza-se o equipamento do tipo Strauss

sem revestimento. Sua execução consiste na simples queda de um soquete, com massa de

300 a 600kg, abrindo um furo de 0,20 a 0,50m, que posteriormente é preenchido com

concreto. É possível executar em solos de alta porosidade, baixa resistência e acima do NA.

Muito utilizada no interior do Estado de São Paulo, principalmente na região de Bauru.

8

Figura 1.8 – Execução de estaca apiloada.

1.2.2.1.6. ESTACA FRANKI

Sua execução consiste em cravar um tubo de revestimento com ponta fechada por meio de

bucha e recuperado na fase de concretagem. Capacidade de desenvolver elevada carga de

trabalho para pequenos recalques. Pode ser executada abaixo do NA. Diâmetros de 0,35 a

0,60m.

9

Figura 1.9 – Processo executivo de estaca Franki.

1.2.2.1.7. ESTACA HÉLICE CONTÍNUA (MONITORADA)

Introduzida no Brasil em 1987 e mais amplamente difundida em 1993. Caracterizada pela

escavação do solo através de um trado contínuo possuidor de hélices em torno de um tubo

central vazado. Após sua introdução no solo até a cota especificada, o trado é extraído

concomitantemente à injeção do concreto (slump ≅ 24cm, pedrisco e areia) através de tubo

vazado.

- Diâmetros de 0,275m a 1,20m;

- Comprimentos de até 33m, em função da torre ;

- Executada abaixo do NA;

- Tempo de execução de estaca de 0,40m de diâmetro e 16m de comprimento em torno de

10min (escavação e concretagem).

- Não ocasiona vibração no terreno

10

Figura 1.10 – Detalhe dos equipamentos empregados na execução da estaca hélice contínua.

Figura 1.11 – Execução de estaca hélice contínua.

11

1.2.2.1.7. ESTACA ÔMEGA (MONITORADA)

Introduzida no Brasil em 1997. A cabeça é cravada por rotação, podendo ser empregada à

mesma máquina utilizada nas estacas hélice contínua; durante a descida do elemento

perfurante o solo é deslocado para baixo e para os lado do furo. Após sua introdução no solo

até a cota especificada, o trado é extraído concomitantemente à injeção do concreto (slump

≅ 24cm, pedrisco e areia) através de tubo vazado.

- Diâmetros de 0,31m a 0,66m;

- Comprimento em função da torre (até 33m);

- Executada abaixo do NA;

- Tempo de execução de estaca de 0,40m de diâmetro e 16m de comprimento em torno de

10min (escavação e concretagem);

- Não ocasiona vibração no terreno;

- Limitada pelo torque da máquina

Figura 1.12 – Detalhe do elemento de perfuração.

12

Figura 1.13 – Posicionamento do equipamento para execução da estaca ômega.

1.2.2.1.8. PRÉ-MOLDADAS

Caracterizam-se por serem cravadas por percussão, prensagem ou vibração e por fazerem

parte do grupo denominado “estacas de deslocamento”. Podem ser constituídas por:

madeira, aço, concreto armado ou protendido, ou pela associação de dois desses elementos

(estaca mista).

• Estaca de Madeira

Empregadas desde os primórdios da história. Atualmente diante da dificuldade de obter

madeiras de boa qualidade e do incremento das cargas nas estruturas sua utilização é bem

mais reduzida.São troncos de árvores cravados por percussão. Tem duração praticamente

ilimitada quando mantida permanentemente submersa. Quando há variação do NA apodrece

por ação de fungos. Em São Paulo tem-se o exemplo do reforço de inúmeros casarões no

bairro Jardim Europa, cujas estacas de madeira apodreceram em razão da retificação e

13

aprofundamento da calha do rio Pinheiros. Diâmetros de 0,20 a 0,40m e Cargas admissíveis

de 150 a 500kN.

Estaca Metálica

Constituídas por peças de aço laminado ou soldado como perfis de secção I e H, chapas

dobradas de secção circular (tubos), quadrada e retangular bem como trilhos

(reaproveitados após remoção de linhas férreas).

Hoje em dia não se discute mais o problema de corrosão de estacas metálicas quando

permanecem inteira ou totalmente enterradas em solo natural, isto porque a quantidade de

oxigênio nos solos naturais é tão pequena que, a reação química tão logo começa já se

esgota completamente este componente responsável pela corrosão.

Estaca de Concreto

É um dos melhores que se presta à confecção de estacas em particular das pré-moldadas

pelo controle de qualidade que pode se exercer tanto na confecção quanto na cravação.

Podem ser de concreto armado ou protendido adensado por vibração ou centrifugação.

As secções transversais mais comumente empregadas são: circular (maciça ou vazada),

quadrada, hexagonal e a octogonal.

Suas dimensões são limitadas para as quadradas de 0,30 x 0,30m e para as circulares de

0,40m de diâmetro. Secções maiores são vazadas. Cuidados devem ser tomados no seu

levantamento. A carga máxima estrutural é especificada pelo fabricante.

14

Figura 1.14 – Cravação de estaca pré-moldada.

Estaca Mega

Elementos de concreto pré-moldado, com comprimentos da ordem de 0,5m, que são

cravados por prensagem através de macaco hidráulico. São utilizados como reforço de

fundações ou substituição de fundações já existentes, usando como reação à própria

estrutura. Sua desvantagem é o alto custo e o longo tempo para cravação.

15

Figura 1.15 – Exemplo de estacas mistas.

1.2.3. TUBULÕES

São elementos de fundação profunda construídos concretando-se um poço (revestido ou

não) aberto no terreno, geralmente dotado de base alargada. Diferenciam-se das estacas

porque em sua etapa final é necessário a descida de um operário para completar a

geometria ou fazer a limpeza. De acordo com a NBR 6122/96 deve-se evitar alturas H

superiores a 2m. Deve-se evitar trabalho simultâneo em bases alargadas de tubulões, cuja

distância, seja inferior o diâmetro da maior base. Quando é necessário executar abaixo do

NA utiliza-se o recurso do ar comprimido.

Este tipo de fundação em breve será proibida no Brasil, como já acontece em países

desenvolvidos.

16

a) A céu aberto

- Revestido

- Não revestido

São em eral utilizados acima do nível d’água.

b) Pneumáticos ou Ar Comprimido

- Revestimento de concreto armado

- Revestimento de aço (Benoto).

São utilizados abaixo do nível d’água.

Observações:

• Em uma fundação por tubulões, é necessária a descida de um técnico para inspecionar o

solo de apoio da base, medidas de fuste e base, verticalidade, etc..

• Em geral, apenas um tubulão já absorve a carga total de um pilar.

Figura 1.16 – Detalhe da ponta de um tubulão.

17

Figura 1.17 – Tubulão a ar comprimido.

Figura 1.18 – Execução de tubulão ar comprimido.

18

Figura 1.19 – Topo de tubulão concretado.

2. CAPACIDADE DE CARGA DE FUNDAÇÃO DIRETA

A capacidade de carga de um solo, σr, é a pressão que, aplicada ao solo através de uma

fundação direta, causa a sua ruptura. Alcançada essa pressão, a ruptura é caracterizada por

recalques incessantes, sem que haja aumento da pressão aplicada.

A pressão admissível σadm de um solo, é obtida dividindo-se a capacidade de carga σr por um

coeficiente de segurança, η, adequado a cada caso.

η σ

=σ radm

A determinação da tensão admissível dos solos é feita através das seguintes formas:

• Pelo cálculo da capacidade de carga, através de fórmula teóricas;

• Pela execução de provas de carga;

• Pela adoção de taxas advindas da experiência acumulada em cada tipo de região

razoavelmente homogênea.

Os coeficientes de segurança em relação à ruptura, no caso de fundações rasas, situam-se

geralmente entre 3 (exigidos em casos de cálculos e estimativas) e 2 (em casos de

disponibilidade de provas de carga ).

19

Portanto, no geral:

η ≥ 2 ➙ provas de carga e η ≤ 3 ➙ fórmula teóricas

A capacidade de carga dos solos varia em função dos seguintes parâmetros:

• Do tipo e do estado do solo (areias e argilas nos vários estados de compacidade e

consistência).

• Da dimensão e da forma da sapata (sapatas corridas, retangulares, quadradas ou

circulares).

• Da profundidade da fundação (sapata rasa ou profunda).

2.1. FÓRMULAS DE CAPACIDADE DE CARGA

Existem várias fórmulas para o cálculo da capacidade de carga dos solos, todas elas

aproximadas, porém de grande utilidade para o engenheiro de fundações, e conduzindo a

resultados satisfatórios para o uso geral.

Para a utilização dessas fórmulas, é necessário o conhecimento adequado da resistência ao

cisalhamento do solo em estudo, ou seja, S = c + σ tg φ

2.1.1. FÓRMULA GERAL DE TERZAGHI (1943 )

Terzaghi, em 1943, propôs três fórmulas para a estimativa da capacidade de carga de um

solo, abordando os casos de sapatas corridas, quadradas e circulares, apoiadas à pequena

abaixo da superfície do terreno (H < B), conforme Figura 2.1.

σR H

45-ϕ/2ϕϕ

Figura 2.1 – Hipótese de Terzaghi.

Mediante a introdução de um fator de correção para levar em conta a forma da sapata, as

equações de Terzaghi podem ser resumidas em uma só, mais geral.

σr = c Nc Sc + q Nq Sq + ½ γ B Nγ Sγ

coesão sobrecarga atrito

20

onde:

c coesão do solo.

Nc, Nq, Nγ coeficientes de capacidade de carga f (ϕ)

Sc, Sq, Sγ fatores de forma (Shape factors)

H.q γ= pressão efetiva de terra à cota de apoio da sapata.

γ peso específico efetivo do solo na cota de apoio da sapata.

B menor dimensão da sapata.

Terzaghi chegou a essa equação através das seguintes considerações:

• Que σR depende do tipo e resistência do solo, da fundação e da profundidade de

apoio na camada.

• As várias regiões consideradas por Terzaghi são:

PQP’ – Zona em equilíbrio (solidária à base da fundação)

PQR – Zona no estado plástico

PRS – Zona no estado elástico

Terzaghi introduz o efeito decorrente do atrito entre o solo e a base da sapata, ou: sapata

de base rugosa.

Os coeficientes da capacidade de carga dependem do ângulo de atrito φ do solo e são

apresentados no Quadro 2.1.

Quadro 2.1 – Coeficientes de capacidade de carga.

RUPTURA GERAL RUPTURA LOCAL φ Nc Nq Nγ N’c N’q N’γ 0 5,7 1,0 0,0 5,7 1,0 0,0 5 7,3 1,6 0,5 6,7 1,4 0,2 10 9,6 2,7 1,2 8,0 1,9 0,5 15 12,9 4,4 2,5 9,7 2,7 0,9 20 17,7 7,4 5,0 11,8 3,9 1,7 25 25,1 12,7 9,7 14,8 5,6 3,2 30 37,2 22,5 19,7 19,0 8,3 5,7 34 52,6 36,5 35,0 23,7 11,7 9,0 35 57,8 41,4 42,4 25,2 12,6 10,1 40 95,7 81,3 100,4 34,9 20,5 18,8

21

Para solos em que a ruptura pode se aproximar da ruptura local, a equação é modificada

para σr = c’ N’c Sc + q N’q Sq + ½ γ B N’γ Sγ ,

onde:

c’ coesão reduzida (c’ = 2/3 c)

φ ângulo de atrito reduzido, dado por tg φ’ = 2/3 tg φ

N’c, N’q, N’γ fatores de capacidade de carga reduzida, obtidos a partir de φ’ .

Os fatores de forma são apresentados no Quadro 2.2 .

Quadro 2.2 – Fatores de forma.

FATORES DE FORMA FORMA DA SAPATA Sc Sq Sγ

Corrida 1,0 1,0 1,0 Quadrada 1,3 1,0 0,8 Circular 1,3 1,0 0,6

Para sapatas retangulares  

  

 ≤

〉 5B) a 3B L

B L

Pode-se admitir

Sc = 1,1 Sq = 1,0 Sγ = 0,9

2.1.2. FÓRMULA DE SKEMPTON (1951) - ARGILAS

Skempton, analisando as teorias para cálculo de capacidade de carga das argilas, a partir de

inúmeros casos de ruptura de fundações, propôs em 1951 a seguinte equação para o caso

das argilas saturadas ( φ = 0º ), resistência constante com a profundidade.

σr = c Nc + q

onde,

c coesão da argila (ensaio rápido)

Nc coeficiente de capacidade de carga, onde ( )B/fN Hc = , considera-se a relação H/B, onde (Quadro 2.3):

H – profundidade de embutimento da sapata.

B – menor dimensão da sapata.

22

Quadro2.3 – Coeficiente de Capacidade de Carga (Skempton)

Nc H / B QUADRADA OU CIRCULAR CORRIDA

0 6,2 5,14 0,25 6,7 5,6 0,5 7,1 5,9 0,75 7,4 6,2 1,0 7,7 6,4 1,5 8,1 6,5 2,0 8,4 7,0 2,5 8,6 7,2 3,0 8,8 7,4 4,0 9,0 7,5

> 4,0 9,0 7,5

Para sapatas retangulares deve-se utilizar a seguinte equação:

( ) ( ) ( )corridaRET cBc N x L/ 2,01N +=

2.2. PROVA DE CARGA EM FUNDAÇÃO DIRETA OU RASA

Para a realização deste ensaio, deve-se utilizar uma placa rígida qual distribuirá as tensões

ao solo. A área da placa não deve ser inferior a 0,5 m2. Comumente, é usada uma placa de

∅ = 0,80 m (Figura 2.2).

Figura 2.2 – Prova de carga sobre placa.

- A prova de carga é executada em estágios de carregamento onde em cada estágio são

aplicados ≤ 20% da taxa de trabalho presumível do solo.

23

- Em cada estágio de carregamento, serão realizadas leituras das deformações logo após a

aplicação da carga e depois em intervalos de tempos de 1, 2, 4, 8, 15, 30 minutos, 1 hora,

2, 4, 8, 15 horas, etc..

Os carregamentos são aplicados até que:

- ocorra ruptura do terreno

- a deformação do solo atinja 25 mm

- a carga aplicada atinja valor igual ao dobro da taxa de trabalho presumida para o solo.

Último estágio de carga pelo menos 12 horas, se não houver ruptura do terreno. O

descarregamento deverá ser feito em estágios sucessivos não superiores a 25% da carga

total, medindo-se as deformações de maneira idêntica a do carregamento. Os resultados

devem ser apresentados como mostra a Figura 2.3.

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450 500

Tensão (kPa)

R ec

al qu

e (m

m )

Figura 2.3 – Curva tensão x recalque de prova de carga sobre placa.

- Geralmente, para solos de alta resistência, prevalece o critério da ruptura, pois as

deformações são pequenas.

- Para solos de baixa resistência, prevalece o critério de recalque admissível, pois as

deformações do solo serão sempre grandes.

24

Os casos extremos, descritos por Terzaghi como de ruptura geral e ruptura local, são

indicados na Figura 2.4..

Figura 2.4 – Curvas de ruptura local e geral.

Tensão admissível de um solo deve ser fixada pelo valor mais desfavorável entre os critérios:

σadm ≤

No Quadro 2.4 são apresentadas pressões básicas (σ0) de vários tipos de solos de acordo

com a NBR6122/1996.

Quadro 2.4 – Pressões básicas dos solos (NBR6122/1996).

Classe Descrição Valores (MPa) 1 Rocha sã, maciça, sem lamina ou sinal de decomposição 3,0 2 Rochas laminadas, com pequenas fissuras, estratificadas 1,5 3 Rochas alteradas ou em decomposição Ver Norma 4 Solos granulados concrecionados – conglomerados 1,0 5 Solos pedregulhosos compactos a muito compactos 0,6 6 Solos pedregulhosos fofos 0,3 7 Areias muito compactas 0,5 8 Areias compactas 0,4 9 Areias medianamente compactas 02 10 Argilas duras 0,3 11 Argilas rijas 0,2 12 Argilas médias 0,1 13 Siltes duros (muitos compactos) 0,3 14 Siltes rijos (compactos) 0,2

2 rupσ

2 máxσ

2 mm25σ

25

15 Siltes médios (medianamente compactos) 0,1

Obs.:

a) Para a descrição dos diferentes tipos de solo, seguir as definições da NBR 6502.

b) Os valores do Quadro 2.4, válidos para largura de 2m devem ser modificados em

função das dimensões e da profundidade conforme prescrito nos itens 6.2.2.5 a

6.2.2.7 da NBR6122/1996.

2.3. INFLUÊNCIA DAS DIMENSÕES DAS FUNDAÇÕES NOS RESULTADOS DE PROVAS DE CARGA

Quando as dimensões das sapatas forem diferentes que as da placa utilizada para a

execução da prova de carga, os recalques elásticos das sapatas serão diferentes dos

recalques elásticos sofridos pela placa utilizada na prova de carga, devido principalmente às

diferentes distribuições de tensões no solo (bulbo de pressões).

Para uma análise simplificada do problema, serão adotadas as hipóteses enumeradas a

seguir:

a) As placas e as sapatas, de largura B e nB respectivamente, apoiam-se à mesma

profundidade H, e aplicam a mesma pressão σ.

b) Os bulbos de pressão com influência nos cálculos serão substituídos por retângulos de

larguras B e nB, e alturas D enD, respectivamente.

c) A deformação “unitária” a qualquer profundidade Z é proporcional ao acréscimo de carga

devido à pressão aplicada pela sapata, isto é,

, M

E zz σ

= σz ➙ tensão vertical à profundidade z, devida a σ

onde M é o módulo de deformabilidade do solo.

Define-se então,

M médio

E zzmédio

σ = , como deformação “unitária” média.

Serão estudados os casos de solos argilosos (M constante com a profundidade) e solos

arenosos (M aumentando linearmente com a profundidade).

• Solos Argilosos

O módulo de deformabilidade é constante com a profundidade.

B – dimensão da placa

nB – dimensão da sapata

Sp – recalque elástico da placa, metros.

26

SF – recalque da fundação de dimensão nD, em metros.

Para a placa: D. M .CS 1p σ

=

Para a sapata: nD. M

. CS 1F σ

=

A relação entre o recalque apresentado pela sapata de fundação e o da placa será

n D.

M .C

nD . M .C

S S

1

1

p

F = σ

σ

=

Portanto, no caso das argilas, em que o módulo de deformabilidade é constante com a

profundidade, o recalque elástico é diretamente proporcional à largura da sapata de

fundação (ou a sua menor dimensão).

• Solos Arenosos

Nos solos arenosos, em que o módulo de deformabilidade aumenta linearmente com a

profundidade, dedução análoga ao caso das argilas poderia ser feita. Porém, além das

hipóteses simplificadoras já introduzidas, teriam que ser adotadas outras, que levariam a

resultados não muito confiáveis.

Por isso, serão apresentados dois casos, baseados na teoria e em observações, que dão

bons resultados na prática.

- Fórmula de Terzaghi-Peck (Areias)

Terzaghi e Peck, em 1948, propuseram a seguinte equação para sapatas apoiadas em solos

arenosos.

onde:

p

F

p

F B B

S S

=

2

F

F

p

F 30,0B

B 2 S S

 

  

 +

=

27

SF recalque elástico da sapata da largura BF, em metros

Sp recalque da placa utilizada na prova de carga, de dimensões 0,30m x 0,30m.

A fórmula acima vale para placas de 30cm x 30cm, apoiadas em solos arenosos.

- Fórmula de Sowers

Para o caso genérico, em que a placa apresenta dimensões diferentes de 30cm x 30cm,

Sowers (1962), baseado na fórmula anterior e em seus próprios trabalhos, propôs a seguinte

correlação.

Para placas de 30cm x 30cm, deve-se empregar a seguinte equação:

2.4. NOS RESULTADOS DAS FÓRMULAS DE CAPACIDADE DE CARGA

Seja a fórmula geral de Terzaghi:

γγγ+γ+=σ S N . B ..2 1 S N H. . S .N .c qqccr

Serão considerados 2 casos, ou seja, argilas puras e areias puras.

2.4.1. ARGILAS

0N , 0,1N , 7,5N0 qc o ===→=φ γ

Assim:

( ) ( )

2

Fp

pF

p

F 3,0BB 3,0BB

S S

  

  

+

+ =

2

F

F

p

F 30,0B

B2 S S

 

  

 +

=

qcr .S .H S c. . 7,5 γ+=σ

28

Pode-se notar que a capacidade de carga das argilas não depende das dimensões da sapata

de fundação. Por outro lado, esta capacidade de carga aumenta com a profundidade, porém

este aumento é muito pequeno e equivale à pressão de peso da terra ( H.γ ) na profundidade

de apoio da fundação.

2.4.2. AREIAS

No caso das sapatas apoiadas nas areias, temos c = 0. Então

Portanto, para as areias, a capacidade de carga aumenta tanto com a dimensão da sapata,

como com a profundidade de apoio da sapata.

3. RECALQUES DE FUNDAÇÕES DIRETAS

A equação geral o cálculo aos recalques de uma fundação pode ser expressa por:

S = Si + Sa + Scs

onde:

S = recalque total

Si ou Se = recalque imediato (Si) ou recalque elástico (Se)

Sa = recalque por adensamento

Scs = recalque por compressão secundária

O recalque elástico Si (Se) é devido às deformações elásticas do solo, ocorre imediatamente

após a aplicação das cargas e é muito importante nos solos arenosos (e relativamente

importante nas argilas não saturadas).

O recalque por adensamento é devido à expulsão da água e ar dos vazios, ocorre mais

lentamente, depende da permeabilidade do solo, e é muito importante nos solos argilosos.

γγγ+γ=σ S.N B. ..2 1S .N H. . qqr

29

O recalque por compressão secundária é devido ao rearranjo estrutural causado por tensões

de cisalhamento, ocorre muito lentamente nos solos argilosos, e é geralmente desprezado no

cálculo de fundações, salvo em casos particulares, quando assume importância decisiva.

3.1. RECALQUES DE ESTRUTURAS

Para o dimensionamento de uma estrutura, verifica-se que, além dos critérios de segurança

à ruptura, critérios de deformações limites devem ser também satisfeitos para o

comportamento adequado das fundações. Na maioria dos problemas correntes, os critérios

de deformações é que condicionam a solução.

Serão apresentadas a seguir algumas definições relativas ao assunto.

a ) Recalque diferencial δ - corresponde à diferença entre os recalques de dois pontos

quaisquer da fundação (Figura 3.1).

l

P

δ

Figura 3.1 – Efeitos do recalque diferencial na estruturas.

Recalque Total - ∆H (∆H1, ∆Hm, ∆HM, ∆H2 ... ).

Recalque Total Máximo - ∆HM

Recalque Total Mínimo - ∆Hm

Recalque Diferencial - δ ( δ1, δ2... ).

Recalque Diferencial Específico - ( ).../ ,/ / 21 lll δδδ .

30

Recalque Diferencial de Desaprumo - δ = ∆H2 - ∆H1

b ) Recalque diferencial específico l/δ ➭ é a relação entre o recalque diferencial δ e a

distância horizontal l , entre dois pontos quaisquer da fundação.

c ) Recalque total ∆H ➭ corresponde ao recalque final a que estará sujeito um

determinado ponto ou elemento da fundação (S1 + Sa).

d ) Recalque admissível de uma edificação ➭ é o recalque limite que uma edificação pode

tolerar, sem que haja prejuízo a sua utilização.

3.2. EFEITO DE RECALQUES EM ESTRUTURAS

Os efeitos dos recalques nas estruturas podem ser classificados em 3 grupos.

a ) Danos estruturais ➭ são os danos causados à estrutura propriamente dita (pilares,

vigas e lajes).

b ) Danos arquitetônicos ➭ são os danos causados à estética da construção, tais como

trincas em paredes e acabamentos, rupturas de painéis de vidro ou mármore, etc.

c ) Danos funcionais ➭ são os causados à utilização da estrutura com refluxo ou ruptura

de esgotos e galerias, emperramento das portas e janelas, desgaste excessivo de elevadores

(desaprumo da estrutura), etc.

Segundo extensa pesquisa levada a efeito por Skempton e MacDonald (1956), na qual foram

estudados cerca de 100 edifícios, danificados ou não, os danos funcionais dependem

principalmente da grandeza dos recalques totais; já os danos estruturais e arquitetônicos

dependem essencialmente dos recalques diferenciais específicos.

Ainda segundo os mesmos autores, no caso de estruturas normais (concreto ou aço), com

painéis de alvenaria, o recalque diferencial específico não deve ser maior que

1:300 – para evitar danos arquitetônicos

1:150 – para evitar danos estruturais

31

3.2.1.RECALQUES ADMISSÍVEIS DAS ESTRUTURAS

A grandeza dos recalques que podem ser tolerados por uma estrutura, depende

essencialmente:

a ) Dos materiais constituintes da estrutura ➭ quanto mais flexíveis os materiais, tanto

maiores as deformações toleráveis.

b ) Da velocidade de ocorrência do recalque ➭ recalques lentos (devidos ao adensamento

de uma camada argilosa, por exemplo) permitem uma acomodação da estrutura, e esta

passa a suportar recalques diferenciais maiores do que suportaria se os recalques

ocorressem mais rapidamente.

c ) Da finalidade da construção ➭ um recalque de 30mm pode ser aceitável para um piso

de um galpão industrial, enquanto que 10mm pode ser exagerado para um piso que suportar

máquinas sensíveis a recalques.

d ) Da localização da construção – recalques totais normalmente admissíveis na cidade do

México ou em Santos, seriam totalmente inaceitáveis em São Paulo, por exemplo.

3.2.2. CAUSAS DE RECALQUES

Rebaixamento do Lençol Freático ➭ caso haja presença de solo compressível no

subsolo, ocorre aumento das pressões geostáticas nessa camada, independente da aplicação

de carregamentos externos.

Solos Colapsíveis ➭ solos de elevadas porosidades, quando entram em contato com a

água, ocorre a destruição da cimentação intergranular, resultando um colapso súbito deste

solo.

Escavações em áreas adjacentes à fundação mesmo com paredes ancoradas,

podem ocorrer movimentos, ocasionando recalques nas edificações vizinhas.

Vibrações ➭ oriundas da operação de equipamentos como: bate-estacas, rolos-

compactadores vibratórios, tráfego viário etc.

Escavação de Túneis – qualquer que seja o método de execução, ocorrerão

recalques da superfície do terreno.

32

3.2.3. RECALQUES LIMITES (BJERRUM – 1963)

1:100 1:200 1:300 1:400 1:500 1:600 1:700 1:800 1:900 1:1000

Dificuldades com máquinas sensíveis a recalques

Perigo para estruturas aporticadas com diagonais

Limite de segurança para edifícios onde não são permitidas fissuras

Limite onde deve ser esperada a primeira trinca em paredes de alvenaria Limite onde devem ser esperadas dificuldades com pontes rolantes

Limite onde o desaprumo de edifícios altos pode se tornar sensível

Trincas consideráveis em paredes de alvenaria Limite de segurança para paredes flexíveis de tijolos (h/L < 1/4) Limite onde devem ser temidos danos na estrutura de edifícios comuns

Figura 3.2 – Recalque diferencial específico l/δ .

Além dos critérios apresentados, existem outros, como por exemplo os do “Design Manual,

NAVDOCKS DM-7”, da Marinha Americana, e os Boston, Nova York, Chigado, etc.).

Da análise das recomendações de várias publicações existentes, deve ficar bem claro que o

estudo de uma fundação não pode, em hipótese alguma, ser feito sem considerar as

características da superestrutura e de sua sensibilidade a recalques.

Na prática, a estimativa de recalques é dificultada por fatores muitas vezes fora do controle

do engenheiro. Alguns aos fatores:

a ) Heterogeneidade do subsolo ➭ normalmente a análise é feita para um perfil inferido

de pontos investigados, e o subsolo pode apresentar heterogeneidades não detectadas num

programa de investigação.

b ) Variações nas cargas previstas para a fundação ➭ advindas de imprecisão nos

cálculos, cargas acidentais imprevisíveis, redistribuição de esforços, etc.

c ) Imprecisão dos métodos de cálculo ➭ apesar do presente estágio de mecânica dos

solos, os métodos disponíveis ainda não são satisfatórios.

33

3.3. PRESSÕES DE CONTATO E RECALQUES

A forma da distribuição das pressões de contato, aplicadas por um placa uniformemente

carregada ao terreno de fundação depende do tipo de solo e da rigidez da placa.

( ) ( )

 

〉 〈

Rígida 5 K Flexível 1,0 K

Circular Placa R

R ( )

( )  

〉 〈

Rígida 10 K Fléxivel 0,05 K

Corrida Placa R

R

3.3.1. SOLOS ARENOSOS

Nos solos arenosos, as deformações são predominantemente de natureza cisalhante.

Consideremos os casos de placas totalmente flexíveis e totalmente rígidas.

a ) Placas totalmente flexíveis KR=0 (Placa Infinitamente Flexível)

Uma placa totalmente flexível, uniformemente carregada, aplica à superfície do solo uma

pressão também uniforme. Como a resistência ao cisalhamento de uma areia é diretamente

proporcional à pressão confinante, então no centro da área carregada (ponto C) a areia é

dotada de maior resistência, e conseqüentemente sofrerá menores deformações.

B BC

Figura 3.3 – Placa flexível – solo arenoso.

( ) ( ) ( )( ) ( )Corrida B t

E Ec.

16 11K Circular

R t

E Ec1K

3

2 c

2 R

3 2

R   

  

µ−

µ− =

 

  µ−=

t= espessura da placa

R= raio da placa

B= menor lado da placa

No entanto, num ponto B, mais próximo das bordas da área carregada, o confinamento é

menor, a resistência ao cisalhamento diminui, e as deformações ( recalques ) são maiores.

34

Decorre então que, para uma placa flexível, uniformemente carregada, apoiada numa areia,

os recalques será maiores nas bordas e menores no centro, e as pressões de contato serão

uniformes em toda a área carregada.

b ) Placas totalmente rígidas KR= (Placa Infinitamente Rígida)

Uma placa infinitamente rígida, uniformemente carregada, produzirá deformações

(recalques) uniformes na superfície do terreno. Comparando-se com o caso anterior (placas

flexíveis), conclui-se que as pressões no centro (altas pressões confinantes) são muito

maiores que nas bordas (baixas pressões confinantes), para que aconteça a uniformidade

dos recalques. A distribuição das pressões de contato tomará a forma aproximada de uma

parábola.

Figura 3.4 – Placa rígida – solo arenoso.

3.3.2. SOLOS ARGILOSOS

Nos solos argilosos (coesivos), predominam as deformações volumétricas, estimadas através

da teoria do adensamento.

a ) Placas totalmente flexíveis KR=0 (Placa Infinitamente Flexível)

Uma placa totalmente flexível, uniformemente carregada, aplica à superfície do solo uma

pressão também uniforme. A distribuição de pressões, na superfície, introduz maiores

pressões nos pontos do solo situados na vertical que passa pelo eixo da placa, e pressões

menores nos pontos do solo afastados deste eixo. Logo, como as pressões nos pontos do

solo mais próximo ao eixo vertical são maiores do que aquelas nos pontos mais afastados,

decorrem maiores recalques no centro da placa e menores nas bordas da mesma, conforme

Figura 3.5.

35

B BC

Figura 3.5 – Placa flexível – solo argiloso.

b ) Placas totalmente rígidas KR= (Placa Infinitamente Rígida)

Uma placa infinitamente rígida, uniformemente carregada, induzirá deformações (recalques)

obrigatoriamente uniformes na superfície do terreno carregado. Isto significa que a placa

rígida acaba por promover uma redistribuição de pressões na superfície da área carregada,

de tal maneira que as pressões transmitidas a qualquer ponto, situado no interior da massa

do solo coesivo, próximo ou distante do eixo vertical de carregamento, sejam uniformes.

Logo, as pressões na superfície de contato deverão ter maior intensidade nas bordas que no

centro do carregamento.

B BC

Figura 3.6 – Placa rígida – solo argiloso.

3.4. CÁLCULO DOS RECALQUES

Ainda que existam dificuldade e imprecisões como as já apontadas anteriormente, a

estimativa dos recalques de uma fundação é um fator de grande importância na orientação

do engenheiro, para solução de problemas de fundação. A seguir serão abordados

procedimentos para estimativa de recalques elásticos de uma fundação, assim como de

recalques devidos ao adensamento dos solos.

36

3.4.1 RECALQUES POR ADENSAMENTO – SOLOS ARGILOSOS

Os recalques devidos às deformações de solos coesivos saturados, são estimados a partir da

teoria do adensamento. A teoria do adensamento prevê uma diminuição no índice de vazios,

devido a um acréscimo de pressão ∆σ. Partindo-se da curva e x log σ, obtida do ensaio de

adensamento numa amostra indeformada do solo, chega-se à expressão para o cálculo dos

recalques (como já visto em Mecânica dos Solos).

Ramo de pré-adensamento

Ramo virgem

Ín di

ce d

e va

zi os

(Tensão de pré-adensamento)

e0 ea

σ(logarítimica)σy0 σa

Cc

Figura 3.7 – Teoria de adensamento.

vo

vo c

o log.H.C.

e1 1h

σ σ∆+σ

+ =∆ , onde

eo = índice de vazios inicial

Cc = índice de compressão

H = espessura da camada de argila

σvo= pressão inicial na camada

∆σ = pressão Aplicada

No cálculo dos recalques por adensamento, muitas vezes é importante conhecer a evolução

destes recalques com o tempo. Os recalques e os tempos em que eles ocorrem estão

relacionados através das expressões seguintes:

∆h – recalque total

St = Ut x ∆h e Ut = f (t)

t . Hd CT 2

v=

37

onde:

∆h = recalque total (m)

St = recalque que ocorre no tempo t (m)

U = porcentagem de adensamento verificada

Ut = porcentagem de adensamento verificada no tempo t.

T = fator tempo, calculado como indicado a seguir

Hd = altura drenante da camada argilosa (m)

Cv = coeficiente de adensamento, obtido no ensaio de adensamento (cm2/s).

t = tempo de ocorrência dos recalques (s)

Resumindo

( ) ( )

 

〉=

〈  

  π==

55% U% , U%-100 log 0,933-1,781T

55% U% , 100

%U 4

TTfU 2

3.4.2. RECALQUE ELÁSTICO

Os recalques elásticos ou imediatos são devidos a deformações elásticas do solo de apoio de

uma fundação, e ocorrem logo após a aplicação das cargas. É de se notar que a velocidade

de evolução das deformações é um fator muito importante para as estruturas, sendo que as

deformações que se processam mais rapidamente são as mais críticas. Portanto, daí, o

particular interesse no estudo dos recalques elásticos, preponderantes nos solos arenosos ou

nos solos não saturados. Os recalques elásticos podem ser estimados a partir da seguinte

expressão, fundamentada na teoria da elasticidade.

w S

2 i IE

1B.S   

   

 µ− σ=

Si = recalque elástico

σ = intensidade da pressão de contato

B = menor dimensão da sapata

µ = coeficiente de Poisson

ES = módulo de elasticidade do solo

Iw = fator de influência, dependente da forma e dimensões da sapata.

38

A seguir, são apresentados alguns valores típicos de µ e ES para vários tipos de solos, e de Iw

para várias formas de sapatas, e para os recalques do canto e centro das mesmas.

Quadro 3.1 – Valores de coeficiente de Poisson do solo (µ).

Tipo de Solo Coeficiente de Poisson (µ)

ARGILA

Saturada Não saturada Arenosa

0,4 a 0,5 0,1 a 0,3 0,2 a 0,3

SILTE 0,3 a 0,35

AREIA Compacta Grossa (e =0,4 a 0,7) Fina (e =0,4 a 0,7)

0,2 a 0,4 0,15 0,25

ROCHA Depende do tipo 0,1 a 0,4

Quadro 3.2 – Módulo de elasticidade do solo (ES)

Tipo de Solo ES (kPa)

ARGILA

Muito mole Mole Média Dura

Arenosa

300 a 3000 2000 a 4000 4000 a 9000 7000 a 18000 30000 a 42000

AREIA

Siltosa Fofa

Compacta ( pedregulho + areia )

compacta

7000 a 20000 10000 a 25000 50000 a 85000 98000 a 200000

Quadro 3.3 – Fator de Influência (IW)

FLEXÍVEL FORMA DA SAPATA

CENTRO CANTO MÉDIO RÍGIDA

CIRCULAR 1,00 0,64 0,85 0,88

QUADRADA 1,12 0,56 0,95 0,82

39

1,5 1,36 0,68 1,20 1,06

2,0 1,53 0,77 1,31 1,20

5,0 2,10 1,05 1,83 1,70

10,0 2,52 1,26 2,25 2,10

RETANGULAR L/B =

100 3,38 1,69 2,96 3,40

Apesar de terem sido apresentados no Quadro 3.2. alguns valores típicos de ES para vários

tipos de solo, é recomendável que este parâmetro seja determinado através de ensaios

especiais (triaxial), que possibilitem a obtenção da curva tensão x deformação.

4. DIMENSIONAMENTO DE FUNDAÇÕES POR SAPATAS

Como as tensões admissíveis à compressão do concreto são muito superiores às tensões

admissíveis dos solos em geral, as seções dos pilares, próximas à superfície do terreno, são

alargadas, de forma que a pressão aplicada ao terreno seja compatível com sua tensão

admissível, formando então a sapata.

O valor da σadm pode ser obtida das seguintes maneiras:

a) Fórmulas Teóricas ➪ conforme visto no item 2.1

b) Prova de Carga ➪ conforme visto no item 2.2

c) Valores Tabelados (NBR 6122) ➪ Quadro 2.4, item 2

d) Sondagem SPT ➪ σadm=0,02.Nmédio (MPa), conforme Figura 4.1.

40

B

~ 1,

5B

13~ 3

111613Nmédio = ++

=

13

16

14

11

20

7

5

8

40

AREIA FINA E MÉDIA CINZA

ARGILA SILTOSA VARIEGADA

AREIA DE GRANUL. VARIADA AMARELA

SPT N.A

Sondagem

σa= 0,02.N= 0,02.13= 0,26MPa

Figura 4.1 – Procedimento para determinação do Nmédio.

4.1.SAPATAS ISOLADAS

Sejam ao e bo as dimensões do pilar, P a carga que ele transmite e σadm a tensão admissível

do terreno. A área de contato da sapata com o solo deve ser:

adm s

PA σ

=

Além disso, devem ser obedecidos os seguintes requisitos no dimensionamento de uma

fundação por sapatas.

a) Distribuição Uniforme de Tensões ➪ o centro de gravidade da área da sapata deve

coincidir com o centro de gravidade do pilar, para que as pressões de contato

aplicadas pela sapata ao terreno tenham distribuição uniforme.

41

P

σtrab ≤ σadm

b B

d

d

d d

l

C.G

Figura 4.2 – Distribuição de tensões na sapata.

b) Dimensionamento Econômico ➪ as dimensões L e B das sapatas, e l e b dos pilares,

devem estar convenientemente relacionadas a fim de que o dimensionamento seja

econômico. Isto consiste em fazer com que as abas (distância d da Figura 4.3) sejam iguais,

resultando momentos iguais nos quatro balanços e secção da armadura da sapata igual nos

dois sentidos. Para isso, é necessário que L-B=l - b

Sabe-se ainda que L x B = Asapata, o que facilita a resolução do sistema.

P

σ

Mesa

l

b d

d

L

B

2,5

2, 5

2,5

Figura 4.3 – Detalhe construtivo de sapata.

• Dimensionamento:

adm

PA σ

= =B.L ➯ L-B=l - b ➯ ( )2b 4 1A

2 bB −+−−= ll ➯ L=A / B

42

• Exemplo de cálculo:

Dados: P=3800kN Pilar=110 x 25cm σadm=350kPa

2m86,10 350

3800A == ➯ l - b = 10-25=85cm ➯ Solução: B=2,90m e L=3,75m

c) Recalques Diferenciais ➯ as dimensões das sapatas vizinhas devem ser tais que eliminem,

ou minimizem, o recalque diferencial entre elas. Sabe-se que os recalques das sapatas

dependem das dimensões das mesmas.

d) Sapatas apoiadas em Cotas Diferentes ➯ No caso de sapatas vizinhas, apoiadas em cotas

diferentes, elas devem estar dispostas segundo um ângulo não inferior a α com a vertical,

para que não haja superposição dos bulbos de pressão. A sapata situada na cota inferior

deve ser construída em primeiro lugar. Podem ser adotados, α = 60º para solos e α = 30º

para rochas.

α

Figura 4.4 – Sapatas apoiadas em cotas diferentes.

d) Dimensões mínimas ➯ sapatas isoladas = 80cm e sapatas corridas = 60cm.

e) Pilares em L ➯ A sapata deve estar centrada no eixo de gravidade do pilar.

43

1, 50

2,00

2, 70

4,40

0,20

0,20CG

Figura 4.5 – Sapata executada em pilar L.

4.2. SAPATAS ASSOCIADAS

Casos em que as cargas estruturais são muito altas em relação à tensão admissível do solo

ou haver superposição de áreas. A sapata deverá estar centrada no centro de carga dos

pilares. Quando há superposição das áreas de sapatas vizinhas, procura-se associá-las por

uma única sapata, sendo os pilares ligados por uma viga.

Sendo P1 e P2 as cargas dos dois pilares, a área da sapata associada será:

admadm

21 RPPA σ

= σ

+ = R = P1 + P2

P1 P2

CG

xa l

P1 P2 CG

xa l

P1+ P2

P2P1

VIGA

PILAR VIGA

Vista Frontal Vista Lateral

Figura 4.6 – Geometria de sapata associada.

44

O centro da gravidade das cargas será definido por l . R Px 2a =

A sapata associada deverá ser centrada em relação a este centro de gravidade das cargas.

4.3. SAPATAS DE DIVISA

Quando o pilar está situado junto à divisa do terreno, e não é possível avançar com a

sapata no terreno vizinho, a sapata fica excêntrica em relação ao pilar. A distribuição das

tensões na superfície de contato não é mais uniforme.

  

   ±=σ

l

e.61 A

P sapata

P

R

e

Figura 4.7 – Excentricidade da carga.

Para fazer com que a resultante R na base da sapata fique centrada, são empregadas vigas

de equilíbrio ou vigas alavancas, de maneira que fique compensado o momento proveniente

da excentricidade e.

45

P1 P2

R2R1 e

l

b

a

P2

P1 Viga Alavanca

Divisa

Figura 4.8 – Esquema estático.

h

a

Aparalelogramo= a.h

x

x

Figura 4.9 – Forma da sapata de divisa.

46

Observações:

O CG da sapata de divisa deve estar sobre o eixo da viga alavanca. As faces laterais (sentido da menor dimensão) da sapata de divisa sevem ser paralelas a da viga alavanca.

O sistema pode ser calculado para a viga sobre 2 apoios (R1 e R2), recebendo as duas cargas

P1 e P2, sendo R1 > P1 e, portanto R2 < P2.

Tomando-se os momentos em relação ao eixo P2 R2, tem-se:

( )

( )e PR

eR P 1

1

11

− =

−=

l

l ll

Como a área da sapata AS é função de  

  

 σ

= adm

1 S1

RAR , devemos conhecer R1. Porém, pela

equação acima, R1 é função da excentricidade e; que por sua vez depende do lado B, que é

uma das dimensões procuradas. É um problema típico de solução por tentativas.

Como é sabido que R1 > P1, toma-se um valor estimado de R1 (> P1), para uma primeira

tentativa. Geralmente, procura-se tomar L/B=2 a 3; e a 1a tentativa para R1 de 1,10 P a 1,30

P.

SEQUÊNCIA SIMPLIFICADA PARA DIMENSIONAMENTO

a) Adota-se R1 maior que P1 geralmente R1 = 1,10.P1

b) Calcula-se e através de e PR 11 −

= l

l

c) Calcula-se B através de 2 bBe −=

d) Calcula-se L através da área da sapata B.L R

adm

1 = σ

e) Calcula-se a relação B L

47

f) Sempre que possível 3B L2 ≤≤ , para sapata ser econômica

g) Se B L

diferente deste intervalo adota-se novo valor de R1

h) Em caso particular quando não for possível a sapata econômica aceita-se B L

fora do

intervalo, porém o mais próximo deste

i) Calcula-se a sapata de P2 através de P2 1 PR 22 ∆−= , sendo ∆P = R1 - P1 e área da

sapata 2 como:

adm

2

adm

2 2

P 2 1PRA

σ

∆− =

σ =

Observação: No caso da viga alavanca não ser ligada a um pilar central (logo P2 = 0), é

necessário utilizar bloco de contrapeso ou estacas de tração para absorver o alívio ∆P. Neste

caso, a prática recomenda que seja considerado o alívio total, ou seja, ∆P = R1 – P1, a favor

da segurança.

Di vis

a

Figura 4.10 – Duas sapatas de divisa.

48

Figura 4.11 – Vista de obra de fundação por sapatas.

Figura 4.12 – Detalhe da armadura e gabarito de sapata isolada.

49

Figura 4.13 - Detalhe da armadura e gabarito de sapatas de divisa.

Figura 4.14 – Concretagem da sapata

50

Figura 4.15 – Detalhe da sapata após concretagem.

Até o momento nenhum comentário
Esta é apenas uma pré-visualização
3 mostrados em 53 páginas