Baixe Exercícios resolvidos de Hidráulica - Três Reservatórios e outras Exercícios em PDF para Hidráulica, somente na Docsity! (a ) ΔH1=130−115=15m M= 4 ∙0,1 π ∙0,002 ∙10−6=63661977,24 N= 1 10−6 ( 128 ∙9,81 ∙0,13∙15π3 ∙1200 ) 0,2 =219213,79 N>2100→RegimeTurbulento N 2 M = 219213,792 63661977,24 =754,84 N 2 M ≥236→Turbulento rugoso f=[−2 log (0,38 ∙219213,791,04263661977,24 )] −2 f=0,03536 ΔH1=15 8 ∙0,03536 ∙1200 ∙0,12 9,81π2 ∙D1 5 =15 D1=( 8∙0,03536 ∙1200∙0,129,81π2 ∙15 ) 1 5 D1=0,29768m=297,68mm D1 ,comercial=300mm→adotado (b ) Q3=0 HB=HY=95+18=113m R→B H R=H B+ΔH RB ΔH RB=H R−H B 10,641∙1325∙Q2 1,85 1101,85∙0,354,87 =130−113 Q2=(1101,85∙0,354,87 ∙1710,641∙1325 ) 1 1,85=0,18343 m 3 s B→X HB=H X+ΔHBX ΔH BX=HB−HX 10,641 ∙2215 ∙Q4 1,85 1101,85 ∙0,24,87 =113−(86+18) Q4=( 1101,85 ∙0,24,87∙910,641∙2215 ) 1 1,85=0,02258m 3 s PB γ =H B−zB=124,002183−90=34,002183m PX γ = PY γ =18m Emrelação aoreservatório principal P A γ =130−84=46m (a ) Asvazões nos trechos2e 3 Equaçãodeconservaçãode massa Q1=Q2+Q3 Q1−Q2−Q3=0 Q1=0,2785 ∙120∙0,2 2,63( 716−HD 1200 ) 0,54 Q1=0,0105428 (716−H D )0,54 Q2=0,2785 ∙120∙0,2 2,63(H D−710 1500 ) 0,54 Q2=0,009346 (H D−710 )0,54 Q3=0,2785∙100 ∙0,15 2,63(H D−701 1500 ) 0,54 Q3=0,00365474 (HD−701 )0,54 Q1−Q2−Q3=0 0,0105428 (716−HD )0,54−0,009346 (H D−710 )0,54−0,00365474 (H D−701 )0,54=0 Comoauxílio doexcel Q1=0,024061 m3 s Q2=0,011168 m3 s Q3=0,012937 m3 s Qcidade=Q 4+Q5=Q2+Q3=0,011168+0,012937=0,02410 m3 s q=190 L hab .dia =0,190 m3 hab . dia Qcidade= kPq 86400 P= 86400Qcidade kq =86400 ∙0,02410 0,190∙1,2 =9133habitantes R1→D PR1 γ + zR1= PD γ +zD+ΔH R1D 0+716=H D+ 10,641 ∙1200∙0,0240611,85 1201,85 ∙0,24,87 716=HD+4,6676 H D=711,3324m PD γ +zD=711,3324 PD γ =711,3324−700=11,3324m D→A H D=H A+ΔH AD 711,3324=H A+ 10,641 ∙1500 ∙0,0129371,85 1001,85 ∙0,154,87 711,3324=H A+10,5293 H A=711,3324−10,5293=700,8031m P A γ + zA=700,8031 P A γ =700,8031−697=3,8031m Equaçãodeconservaçãode massa Q3=Q1+Q2 R2→A 0+40=36,12+ΔHR2 A ΔH R2 A=40−36,12 10,641 ∙500 ∙Q2 1,85 1201,85∙0,254,87 =3,88 Q2=(1201,85∙0,254,87 ∙3,8810,641 ∙500 ) 1 1,85=0,06289 m 3 s Determinandoo nível deáguadoreservatório 3 Q3=Q1+Q2 Q3=0,12+0,06289=0,1829 m3 s J3= 10,641 ∙0,18291,85 1201,85 ∙0,354,87 =0,01086 m m ΔH A R3=L3 J3=0,01086 ∙300=3,258m AplicandoBernoullide A→R3 H A= PR3 γ + zR3+ΔH A R3 36,12=0+N A3+3,258 N A3=36,12−3,258=32,862m (a ) Acarga piezométrica emB HB= PB γ + zB=5+305=310m (b )Calcular odiâmetrono trecho3 ΔH 3=HB−C PR 3 =310−297=13m ΔH 3=13 10,641 ∙1000∙0,11,85 1101,85 ∙D3 4,87 =13 D3=( 10,641∙1000∙0,11,851101,85 ∙13 ) 1 4,87 D3=0,27721m=277,21mm D3 , comercial=300mm (c )Calcular as vazões HB>C PR 2 →R2é receptor Equaçãodeconservaçãode massa Q1=Q2=Q3+Q 4 ΔH R1B=C PR1−HB=316−310=6m C PR1=H A+ΔHR 1A 316=H A+ΔH R1 A H A=316−ΔHR 1A H A=HB+ΔH AB H A=310+ΔH AB 316−ΔH R1 A=310+ΔH AB ΔH R1 A+ΔH AB=10 8 f 1L1Q1 2 9,81π2D1 5+ 8 f 2L2Q2 2 9,81π 2D2 5=10 Q2=0,1+Q 4 B→R2 HB=C PR2+ΔH4 310=300+ 8 ∙0,02 ∙600 ∙Q4 2 9,81π2 ∙0,155 ΔH 4=310−300=10m 8 ∙0,02 ∙600∙Q4 2 9,81π 2 ∙0,155 =310−300 Q4=√ 10 ∙9,81π2 ∙0,1558 ∙0,02 ∙600 =0,02767m 3 s Q1=Q2=0,1+0,02767=0,1277 m3 s Q1=Q2=0,1277 m3 s Q3=0,10 m3 s Q4=0,02767 m3 s (d )Calculandoo diâmetrono trecho1 Primeiro iremos determinar acarga piezométricaem A