Baixe Respiração Celular, Metabolismo e cadeia respiratória e outras Resumos em PDF para Biologia, somente na Docsity! APOSTILA DE BIOLOGIA 20-04 Professora: Elaine Pacheco Metabolismo Caros alunos, nesta atividade iremos conhecer as formas nas quais os seres vivos fazem a manutenção de energia em seus organismos. Todos os seres vivos necessitam de energia para a manutenção, crescimento e reprodução. Os organismos autótrofos produzem o seu próprio alimento pela fotossíntese ou quimiossíntese e são chamados de produtores. Os organismos heterótrofos cuja fonte de energia provem da alimentação de outros seres vivos são chamados consumidores. Tanto os produtores como consumidores, quando precisam gastar a energia obtida fazem isso de duas maneiras: respiração celular e fermentação. Respiração aeróbia: A respiração aeróbia consiste em levar adiante o processo de degradação das moléculas orgânicas, reduzindo-as à moléculas praticamente sem energia liberável. Os produtos da degradação inicial da molécula orgânica são combinados com o oxigênio do ar e transformados em gás carbônico e água. Etapas da respiração aeróbica: A degradação da glicose na respiração celular se dá em três etapas fundamentais: glicólise, ciclo de Krebs e cadeia respiratória. A glicólise ocorre no hialoplasma da célula, enquanto o ciclo de Krebs e a cadeia respiratória ocorrem no interior das mitocôndrias (estrutura responsável pela respiração celular). Glicólise: Como já vimos, a glicólise consiste na transformação de uma molécula de glicose, ao longo de várias etapas, em duas moléculas de ácido pirúvico. Nesse processo são liberados quatro hidrogênios, que se combinam dois a dois, com moléculas de uma substância celular capaz de recebê-los: o NAD (nicotinamidaadenina-dinucleotídio). Ao receber os hidrogênios, cada molécula de NAD se transforma em NADH2. Durante o processo, é liberada energia suficiente para a síntese de 2 ATP. Ciclo do Ácido Cítrico ou de Krebs: Oxidação do Ácido Pirúvico As moléculas de ácido pirúvico resultantes da degradação da glicose penetram no interior das mitocôndrias, onde ocorrerá a respiração propriamente dita. Cada ácido pirúvico reage com uma molécula da substância conhecida como coenzima A, originando três tipos de produtos: acetil-coenzima A, gás carbônico e hidrogênios. O CO2 é liberado e os hidrogênios são capturados por uma molécula de NADH2 formadas nessa reação. Estas participarão como veremos mais tarde, da cadeia respiratória. Em seguida, cada molécula de acetil- CoA reage com uma molécula de ácido oxalacético, resultando em citrato (ácido cítrico) e coenzima A, conforme mostra a equação abaixo: Analisando a participação da coenzima A na reação acima, vemos que ela reaparece intacta no final. Tudo se passa, portanto como se a CoA tivesse contribuído para anexar um grupo acetil ao ácido oxalacético, sintetizando o ácido cítrico. Cada ácido cítrico passará, em seguida, por uma via metabólica cíclica, denominada ciclo do ácido cítrico ou ciclo de Krebs, durante o qual se transforma sucessivamente em outros compostos. Obs: Os oito hidrogênios liberados no ciclo de Krebs reagem com duas substâncias aceptoras de hidrogênio, o NAD e o FAD, que os conduzirão até as cadeias respiratórias, onde fornecerão energia para a síntese de ATP. No próprio ciclo ocorre, para cada acetil que reage, a formação de uma molécula de ATP. Cadeia respiratória e liberação de energia: O destino dos hidrogênios liberados na glicólise e no ciclo de Krebs é um ponto crucial no processo de obtenção de energia na respiração aeróbica. Como vimos, foram liberados quatro hidrogênios durante a glicólise, que foram capturados por duas moléculas de NADH2. Na reação de cada ácido pirúvico com a coenzima A formam-se mais duas moléculas de NADH2. No ciclo de Krebs, dos oito hidrogênios liberados, seis se combinam com três moléculas de NAD, formando três moléculas de NADH2, e dois se combinam