Baixe tabela calculo I - calculo diferencial e integral e outras Esquemas em PDF para Cálculo, somente na Docsity! UNIVERSIDADE FEDERAL DO ABC Tabela de Derivadas, Integrais e Identidades Trigonométricas Derivadas Regras de Derivação • (cf(x)) ′ = cf ′(x) • Derivada da Soma (f(x) + g(x)) ′ = f ′(x) + g ′(x) • Derivada do Produto (f(x)g(x)) ′ = f ′(x)g(x) + f(x)g ′(x) • Derivada do Quociente( f(x) g(x) ) ′ = f ′(x)g(x) − f(x)g ′(x) g(x)2 • Regra da Cadeia (f(g(x)) ′ = (f ′(g(x))g ′(x) Funções Simples • ddxc = 0 • ddxx = 1 • ddxcx = c • ddxx c = cxc−1 • ddx ( 1 x ) = ddx ( x−1 ) = −x−2 = − 1 x2 • ddx ( 1 xc ) = ddx (x −c) = − c xc+1 • ddx √ x = ddxx 1 2 = 12x − 12 = 1 2 √ x , Funções Exponenciais e Logarı́tmicas • ddxe x = ex • ddx ln(x) = 1 x • ddxa x = ax ln(a) Funções Trigonométricas • ddx sen x = cos x • ddx cos x = −sen x, • ddx tg x = sec 2 x • ddx sec x = tg x sec x • ddx cotg x = −cossec 2x • ddx cossec x = −cossec x cotg x Funções Trigonométricas Inversas • ddx arcsen x = 1√ 1−x2 • ddx arccos x = −1√ 1−x2 • ddx arctg x = 1 1+x2 • ddx arcsec x = 1 |x| √ x2−1 • ddx arccotg x = −1 1+x2 • ddx arccossec x = −1 |x| √ x2−1 Funções Hiperbólicas • ddx senh x = cosh x = ex+e−x 2 • ddx cosh x = senh x = ex−e−x 2 • ddx tgh x = sech 2 x • ddx sech x = − tgh x sech x • ddx cotgh x = − cossech 2 x Funções Hiperbólicas Inversas • ddx csch x = − coth x cossech x • ddx arcsenh x = 1√ x2+1 • ddx arccosh x = 1√ x2−1 • ddx arctgh x = 1 1−x2 • ddx arcsech x = −1 x √ 1−x2 • ddx arccoth x = 1 1−x2 • ddx arccossech x = −1 |x| √ 1+x2 1 Integrais Regras de Integração • ∫ cf(x)dx = c ∫ f(x)dx • ∫ [f(x) + g(x)]dx = ∫ f(x)dx+ ∫ g(x)dx • ∫ f ′(x)g(x)dx = f(x)g(x) − ∫ f(x)g ′(x)dx Funções Racionais • ∫ xn dx = x n+1 n+1 + c para n 6= −1 • ∫ 1 x dx = ln |x|+ c • ∫ du 1+ u2 = arctgu+ c • ∫ 1 a2 + x2 dx = 1 a arctg(x/a) + c • ∫ du 1− u2 = { arctgh u+ c, se |u| < 1 arccotgh u+ c, se |u| > 1 = 1 2 ln ∣∣1+u 1−u ∣∣+ c Funções Logarı́tmicas • ∫ ln xdx = x ln x− x+ c • ∫ loga xdx = x loga x− x lna + c Funções Irracionais • ∫ du√ 1− u2 = arcsenu+ c • ∫ du u √ u2 − 1 = arcsec u+ c • ∫ du√ 1+ u2 = arcsenh u+ c = ln |u+ √ u2 + 1|+ c • ∫ du√ 1− u2 = arccosh u+ c = ln |u+ √ u2 − 1|+ c • ∫ du u √ 1− u2 = −arcsech |u|+ c • ∫ du u √ 1+ u2 = −arccosech |u|+ c • ∫ 1√ a2 − x2 dx = arcsen x a + c • ∫ −1√ a2 − x2 dx = arccos x a + c Funções Trigonométricas • ∫ cos xdx = sen x+ c • ∫ sen xdx = − cos x+ c • ∫ tg xdx = ln |sec x|+ c • ∫ csc xdx = ln |csc x− cot x|+ c • ∫ sec xdx = ln |sec x+ tg x|+ c • ∫ cot xdx = ln |sen x|+ c • ∫ sec x tg xdx = sec x+ c • ∫ csc x cot xdx = − csc x+ c • ∫ sec2 xdx = tg x+ c • ∫ csc2 xdx = − cot x+ c • ∫ sen2 xdx = 12(x− sen x cos x) + c • ∫ cos2 xdx = 12(x+ sen x cos x) + c Funções Hiperbólicas • ∫ sinh xdx = cosh x+ c • ∫ cosh xdx = sinh x+ c • ∫ tgh xdx = ln(cosh x) + c • ∫ csch xdx = ln ∣∣tgh x2 ∣∣+ c • ∫ sech xdx = arctg(sinh x) + c • ∫ coth xdx = ln | sinh x|+ c 2