Livro A RELAÇÃO Agua - Solo, Manuais, Projetos, Pesquisas de Engenharia Agronômica
Docsity.Brasil
Docsity.Brasil

Livro A RELAÇÃO Agua - Solo, Manuais, Projetos, Pesquisas de Engenharia Agronômica

190 páginas
50Números de download
1000+Número de visitas
Descrição
Livro A RELAÇÃO Agua - Solo
80 pontos
Pontos de download necessários para baixar
este documento
Baixar o documento
Pré-visualização3 páginas / 190
Esta é apenas uma pré-visualização
3 mostrados em 190 páginas
Esta é apenas uma pré-visualização
3 mostrados em 190 páginas
Esta é apenas uma pré-visualização
3 mostrados em 190 páginas
Esta é apenas uma pré-visualização
3 mostrados em 190 páginas
untitled

A Relação da Planta com a Água

Carlos Pimentel

UFRURALRJ

A RELAÇÃO DA PLANTA

COM A ÁGUA

A RELAÇÃO DA PLANTA

COM A ÁGUA

CARLOS PIMENTEL Eng.Agr.; D.E.A. e Dr. Sc.; Prof.Titular

Depto. de Fitotecnia - Instituto de Agronomia Universidade Federal Rural do Rio de Janeiro

Seropédica - RJ - 23.851-970 - Brasil e-mail: greenman@amcham.com.br

FICHA TÉCNICA

FICHA CATALOGRÁFICA, ELABORADA PELA BIBLIOTECA CENTRAL DA UFRURALRJ

©Carlos Pimentel, 2004

Direitos desta edição reservados à EDUR - Editora Universidade Federal Rural do Rio de Janeiro Km 47 Antiga Rodovia Rio-São Paulo Seropédica - RJ - CEP: 23.851-970 E-mail: edur@ufrrj.br

ISBN: 85-85720-45-X

Coordenação geral: Alberto M. T. Magalhães Revisão de texto: Angela Portocarrero Projeto gráfico: Luciana Costa Leite Ilustrações e gráficos: Carlos Pimentel Editoria de arte: Artware Projetos Especiais Foto da capa: Prof. D. Laffray

Estômato fechado de Brassica campestris

A reprodução desta obra, no todo ou em parte, por qualquer meio, será permitida somente com a autorização, por escrito, dos editores.

581.5222 Pimentel, Carlos, 1955 - P644r A relação da planta com a água / Carlos Pimentel. -

Seropédica, RJ: Edur, 2004. 191p.: il.

Bibliografia: p.171-191.

1. Plantas e água. 2. Plantas e solo. 3. Plantas - Efeitos da seca. 4. Plantas - Resistência a seca. I. Título

CHANSON D’AUTOMNE

Les sanglots longs Des violons

De l’automne Blessent mon coeur

D’une langueur Monotone.

Tout souffocant Et blême, quand

Sonne l’heure, Je me souviens

Des jours anciens Et je pleure.

Et je m’en vais Au vent mauvais

Qui m’emporte Deçà, delà, Pareil à la

Feuille morte.

Poema de Paul Verlaine, que lembra Paris, um banho de cultura, como dizia meu pai.

Dedico: aos meus pais,

Prof. Paulo Cezar de Almeida Pimentel e Aniela Maria Niedenthal Pimentel,

pela minha educação; a minha esposa, Sandra Greenman,

e as minhas três filhas, Aniela, Joana e Marina, sobretudo pela paciência durante a elaboração deste livro;

e ao Prof. Vieira da Silva, pela amizade e importante contribuição

na minha formação científica e na elaboração deste livro.

Agradeço: aos amigos Dr. Alberto M. T. Magalhães,

pela coordenação da pré-impressão do livro, e ao Prof. D. Laffray, pela gentileza em ceder a foto da capa.

PREFÁCIO

O título deste livro é uma tradução do título do primeiro livro sobre o assunto, escrito pelo russo Prof. N. A. Maximov (traduzido para o inglês pelo Prof. R. H. Yapp), em 1929, que realizou um estudo aprofundado sobre a adaptação de vegetais à deficiência hídrica, e que ainda é uma referência bastante atual em alguns assuntos. O estudo sobre a relação da planta com a água é imprescindível para a melhor compreensão da relação da planta com o meio, pois a disponibilidade hídrica é o principal fator determinante na distribuição das espécies na terra e no potencial produtivo daquelas cultivadas, especialmente em clima tropical. No Brasil, os livros-texto mais utilizados para as disciplinas de fisiologia vegetal, que descrevem a relação da planta com a água, são os livros dos Profs. Klaus Reichardt e Paulo Libardi e, mais recentemente, o livro do Prof. Luís Roberto Angelocci, todos da ESALQ-USP. Os dois primeiros têm formação na área de ciências do solo e, o terceiro, na área de biofísica. Desta forma, estava faltando um texto elaborado por um fisiologista vegetal, para ter-se um outro enfoque da relação da planta com a água, para o ensino tanto na graduação quanto na pós-graduação, nas ciências biológicas e, especificamente, na agronomia e outras profissões que lidam com a agricultura, no Brasil.

Tendo em vista que os livros-texto disponíveis sobre a relação da planta com a água, na área de fisiologia vegetal, foram elaborados por excelentes pesquisadores de países de clima temperado, como o mais recente livro dos Profs. Paul Kramer (falecido) e John Boyer, cuja leitura é altamente recomendável, o enfoque do assunto, nesses textos, é diferente daquele para o ambiente tropical; e, por isto, mais textos enfocando a relação da planta com o ambiente tropical se fazem necessários, para a formação de profissionais da agricultura nas regiões tropicais.

Sumário

INTRODUÇÃO 13

Capítulo 1

ANÁLISE TERMODINÂMICA DO SISTEMA AQUOSO PLANTA 1.1 Introdução 15 1.2 Primeira lei da termodinâmica 19 1.3 Segunda lei da termodinâmica 22 1.4 Entropia e Energia Livre 27 1.5 A condição de equilíbrio 32 1.6 O potencial químico e os sistemas membranares 34 1.7 O potencial químico e a descrição da composição do sistema 39 1.8 A termodinâmica e a relação de tecidos vegetais com a água 42

Capítulo 2

A PLANTA E A ÁGUA 2.1 Funções da água 48 2.2 Propriedades físico-químicas da água 49 2.3 Propriedades de soluções aquosas e outra dedução do potencial

da água nos sistemas biológicos 52 2.4 Potencial da água no solo, na planta e na atmosfera 55 2.5 A célula em relação à água 57

Capítulo 3

A ÁGUA NO SISTEMA SOLO-PLANTA-ATMOSFERA (SSPA) 3.1 Introdução 65 3.2 O transporte da água no SSPA 67 3.3 A raiz em relação à água 70 3.4 O movimento da água na raiz 80 3.5 O xilema e o transporte de água 82 3.6 A folha em relação à água 86 3.7 O movimento de água na folha 89 3.8 A camada-limite à folha 90

Capítulo 4

A PERDA DE ÁGUA PELAS PLANTAS E O SEU CONTROLE 4.1 Introdução 92 4.2 A perda de água pela transpiração 93 4.3 Os estômatos e o controle da perda de água na transpiração 98 4.4 Regulação do movimento dos estômatos por fatores internos e

externos e seu custo energético 111 4.5 A eficiência no uso de água 114

Capítulo 5

RESPOSTAS DAS PLANTAS À SECA 5.1 Introdução 119 5.2 A falta d’água e a produção agrícola 121 5.3 O que é seca? 123 5.4 Como estudar as respostas da planta à seca? 125 5.5 Quais as respostas à seca estudar? 129 5.6 Variáveis indicadoras da resposta da planta ao estresse por seca 138 5.7 Em que estádio de desenvolvimento estudar as respostas da

planta à seca? 141

Capítulo 6

RESPOSTAS ADAPTATIVAS DAS PLANTAS À DEFICIÊNCIA HÍDRICA 6.1 Introdução 144 6.2 Quais as respostas adaptativas à seca estudar para a espécie em questão? 148 6.3 Principais respostas adaptativas para a tolerância à seca 151 6.4 Perpectivas para o aumento da produtividade agrícola em áreas

marginais 164

BIBLIOGRAFIA Literatura citada e recomendada 171 Outra bibliografia citada no texto 171

INTRODUÇÃO

A água é a substância fundamental à vida, tal qual conhecemos, e é uma das primeiras substâncias a serem procuradas como indício da possibilidade de vida em outros planetas, por exemplo, como se viu recentemente com a discussão sobre a vida em Marte, baseada em estudos feitos por sondas espaciais. Na Terra, os primeiros seres vivos surgiram nos oceanos, como vegetais evoluindo para animais, e passando a colonizar a superfície terrestre, com adaptações a este ambiente inóspito e seco. A importância da água nos sistemas biológicos é devida às propriedades físico-químicas únicas da sua molécula, como o alto valor de calor específico e de vaporização, o que estabiliza a temperatura de um sistema, como a biosfera, com a evaporação da água dos oceanos, permitindo a vida animal e vegetal, ou como a folha, com o resfriamento desta devido à transpiração. Sobretudo a partir de agora, com as previsões climáticas de aumento da concentração de CO2 atmosférico e da temperatura do ar em 2°C, haverá maiores variações climáticas, com secas mais freqüentes, causando um grande efeito na relação da planta com o meio, a economia de água potável é imprescindível para a agricultura e para o homem. Assim, o estudo da relação da planta com a água é de grande importância para a economia de água e aumento da produtividade na agricultura, sobretudo em países tropicais, como o Brasil. Tendo em vista que a população mundial vem aumentando enormemente, sobretudo nos países mais pobres e vulneráveis do terceiro mundo, principalmente localizados nos trópicos, a produção de alimentos nestas regiões tem de ser aumentada, isto porque a produção agrícola local não é suficiente para manter essa população crescente, por serem áreas marginais para a agricultura, com deficiência de água e de nutrientes (Rockström & Falkenmark, 2000). Na zona tropical (América do Sul, África, Ásia), onde vivemos, a incidência de baixos índices de precipitação é muito maior que nas outras zonas, apesar de existirem regiões áridas também nestas outras. Por exemplo, segundo Singh (1995), mais de 60% do cultivo de feijão comum, em países da América Latina, África e Ásia sofrem redução na produção devido à falta d’água, pois o requerimento hídrico da planta, durante o seu ciclo, não é satisfeito.

A presente revisão sobre a relação da planta com a água pretende enfocar esta relação no ambiente tropical e inicia-se com uma análise termodinâmica da água nos sistemas biológicos, que é diferente daquela no sistema solo, onde não há variação de volume, e pretende contribuir com o estudo do comportamento do vegetal sob desidratação e seus possíveis mecanismos de adaptação à seca.

13

A RELAÇÃO DA PLANTA COM A ÁGUA

14

Análise Termodinâmica do Sistema Aquoso Planta

Capítulo 1

CARLOS PIMENTEL

1.1 • INTRODUÇÃO

A termodinâmica é a ciência que estuda as inter-relações entre a matéria e a energia. Estas relações são expressas com a ajuda de equações matemáticas simples e exatas, quando comparadas com as equações mais complexas usadas pela mecânica (quântica p. ex.). Estas equações são, segundo Thellier & Ripoll (1992):

H = U + PV;

F = U - TS; e

G = U + PV - TS = H - TS = F + PV,

onde se introduz uma nova terminologia, com as variáveis termodinâmicas tais como a Entalpia (H), a Energia Interna (U), a Energia Livre de Helmoltz (F), a Entropia (S) e a Energia Livre de Gibbs (G), que são deduzidas a partir de variáveis físicas mais conhecidas da maioria dos estudantes: a Pressão (P), o Volume (V) e a Temperatura (T).

A termodinâmica estuda o sistema (definido como a totalidade de um conjunto material, que pode conter sólidos, líquidos e gases) e suas relações com o meio (que é tudo o que circunda o sistema em estudo) (Anderson, 1996). Como exemplos, podemos ter sistemas com um contorno definido, como um simples copo com água, com um bordo real, o copo de vidro, interagindo com o meio que o circunda, o ar (com composição, temperatura e pressão definidas), a força da gravidade da terra e de outros corpos etc.; ou ainda sistemas como uma folha, uma árvore ou a floresta. Podemos ter também sistemas sem contorno visível, como a atmosfera, interagindo com a superfície da terra e a troposfera, ou a troposfera, interagindo com a estratosfera e a atmosfera.

Já a mecânica estuda corpos que possuem uma individualidade simples, avaliando as forças aplicadas à massa, que geram velocidade e aceleração, por exemplo, porém, a mecânica pode reunir estes corpos simples em sistemas mecânicos, como no caso do estudo das propriedades de gases, pelas leis mecânicas, aplicadas a um conjunto de moléculas individuais. Os resultados derivados destes estudos se aproximam do enfoque da termodinâmica. De uma forma geral, poderia se dizer que, enquanto a mecânica estuda as propriedades externas de um corpo, a termodinâmica estuda as mudanças internas deste sistema (Fermi, 1936).

15

A RELAÇÃO DA PLANTA COM A ÁGUA

Quando se estuda uma substância, sabe-se que todas as moléculas que a compõem contém energia nos seus átomos e ligações químicas, as quais podem ser trocadas com o meio através de movimento, reações químicas ou irradiação. Esta troca de energia resulta num rearranjo da estrutura química ou molecular da substância, e este rearranjo requer gasto de energia. Portanto, uma fração da variação de energia do processo é gasta no rearranjo e outra é gasta na troca com o meio. Esta energia gasta no rearranjo é chamada de entropia, e a energia trocada, que pode produzir trabalho, é chamada de energia livre. A energia livre é, por isso, dependente do número de moléculas existentes no sistema, que trocam energia. Variando o número de moléculas do sistema varia-se a capacidade de gerar trabalho no sistema e por isso Gibbs estabeleceu que a capacidade de gerar trabalho por molécula (por número de moles) é melhor para se lidar que a capacidade total do sistema em gerar trabalho, definindo esta relação, trabalho útil por mol, como sendo o potencial químico da substância (Thellier & Ripoll, 1992).

Uma outra característica da termodinâmica é que ela se limita a um momento ou estado. Spanner (1964) cita alguns exemplos, para ilustrar essa afirmação. O primeiro é o da água dentro de uma jarra sobre uma mesa, e a pressão de vapor acima da água, que, em um ponto preciso, tem um valor determinado. Todas as características do sistema e do meio dependem da história e da geografia do sistema, como há quanto tempo a água foi posta na jarra (atingindo um equilíbrio), a que altitude estamos fazendo o estudo, se existem barreiras ao movimento de gases etc. Contudo, uma certeza pode-se ter: quando o sistema atingir um equilíbrio interno, pode-se afirmar, com segurança, que a pressão de vapor num determinado ponto dentro da jarra é perfeitamente definida, e tem um valor único, que pode ser tabulado para referência futura. O segundo exemplo seria a adição de um extrato enzimático em uma mistura de substratos orgânicos dessa enzima. Após certo tempo, haverá um valor na proporção de substâncias existentes então, que dependerá da quantidade inicial das substâncias orgânicas, da atividade do extrato enzimático e do tempo que a reação progrediu. Porém, se o equilíbrio é atingido, todas as incertezas desaparecem, e as proporções das substâncias são definidas por uma relação simples, determinada pela constante de equilíbrio da reação (K). O terceiro exemplo é o de um recipiente hermético, onde foi criado vácuo, o que é um processo comum na indústria. Se ocorrer um pequeno vazamento, uma corrente de ar começará a penetrar no recipiente, em alta velocidade, devido à diferença entre a pressão atmosférica do ar externo e a do vácuo no recipiente. Neste caso, a localização e o

16

CARLOS PIMENTEL

posicionamento das moléculas dos gases, que compõem o ar que penetra no recipiente, seria altamente errático e variável, devido à alta, e variável, energia cinética destas moléculas, com grande movimentação dentro do recipiente. Supondo que o vazamento seja reparado, e não haja mais entrada de ar, a energia cinética das moléculas dos gases dentro do recipiente se estabilizará, e a localização e estado energético das moléculas dos gases, no recipiente, será facilmente previsível.

Este último exemplo serve para mostrar a segunda principal característica da termodinâmica, que é a descrição, no sistema em estudo, de propriedades, as quais necessitam do equilíbrio para serem medidas. Nos dois primeiros exemplos, algumas destas propriedades são a pressão parcial de vapor d’água na jarra e a constante de equilíbrio na reação química. Mas o que não é tão óbvio é que outras propriedades, como a temperatura, a pressão dos gases e a entropia, só são definidas realmente quando o sistema está em equilíbrio. Isto pode ser ilustrado no terceiro exemplo, ao tentar-se medir a temperatura do ar bem próximo ao vazamento, pois esta será extremamente variável e dependente da posição e forma do termômetro (Spanner, 1964).

Portanto, estas propriedades termodinâmicas (no equilíbrio) são consideradas importantes ferramentas conceituais para a descrição de sistemas biológicos. Esta limitação do uso de propriedades, que só são definidas no equilíbrio, tem importantes conseqüências: a simplificação das equações matemáticas necessárias à descrição de um sistema biológico em estudo; e em segundo lugar, a descrição clássica termodinâmica de um sistema não avalia fluxos, pois isto significa que o sistema não está em equilíbrio, e sim em constante mudança. Estas avaliações de fluxos, por exemplo, podem ser feitas em outra área de estudo, a termodinâmica fora do equilíbrio ou irreversível (Pauling, 1970), que não será tratada aqui.

As avaliações termodinâmicas de um sistema somente no equilíbrio geram alguns problemas conceituais para os sistemas biológicos. Isto porque, se os resultados termodinâmicos só são válidos para sistemas em equilíbrio, seria correto aplicá-los a sistemas como uma célula viva, que se sabe não estar em equilíbrio? Para um exemplo concreto, uma raiz viva é um sistema que não está em equilíbrio, pois está absorvendo nutrientes, consumindo oxigênio, gerando potenciais eletroquímicos etc. Pode-se crer que as relações hídricas de uma célula possam ser governadas por equações termodinâmicas, como a do potencial da água:

-Ψa = -Ψm - Ψπ + Ψp

17

A RELAÇÃO DA PLANTA COM A ÁGUA

Em sistemas biológicos, pressupõe-se que, no momento da avaliação do sistema, este esteja em equilíbrio estacionário (“steady-state”), também chamado de homeostase, antes e depois de um fluxo ocorrer. Este equilíbrio estacionário significa que as quantidades de matéria e energia que entram no sistema se equivalem às quantidades que saem deste. Por exemplo, pode-se prever o movimento da água do solo para a planta e da planta para a atmosfera, analisando-se o valor do potencial da água no solo (-Ψa,s), da planta (-Ψa,p) e da atmosfera (-Ψa,atm), mas não o fluxo que, como foi citado acima, não pode ser estudado pela termodinâmica. Outro exemplo é que pode-se estudar o provável movimento de íons do apoplasto para o simplasto, através do potencial eletroquímico transmembranar, mas não o seu fluxo. Evidentemente, outros processos biológicos, como o consumo de oxigênio, a síntese protéica ou a atividade de bombas iônicas, influenciarão estes processos. Mas a influência maior será na taxa de ocorrência (ou velocidade) do processo, que não é estudada pela termodinâmica, e que simplesmente pode prever a direção provável da ocorrência do fluxo. Enquanto a noção de taxas é estranha à termodinâmica clássica, a noção de direção das mudanças não, pois se pode avaliar as propriedades termodinâmicas antes e depois das mudanças. Por exemplo, pode-se questionar se uma mistura de amido e ácido fosfórico vai mudar espontaneamente para hexose-fosfato, ou se a direção da mudança espontânea ocorre na ordem inversa. Isto pode ser medido, inibindo-se a reação por um momento para analisar as suas propriedades (Stadler, 1989). Outro conceito importante da termodinâmica é que, enquanto os planetas e estrelas, numa visão macroscópica, têm sua velocidade de deslocamento no espaço sideral diminuída gradativamente, os elétrons no espaço atômico, numa visão microscópica, teriam movimentos perpétuos, incessantes, em torno do núcleo do átomo. Contudo, hoje se sabe que também os átomos são divisíveis em partículas menores, os quarks e glúons. Já se sabe também que os elétrons têm um movimento finito, quando ocorre a concentração de toda a matéria, inclusive os átomos, num buraco negro. Portanto, houve um início e haverá um fim do movimento dos elétrons. Porém, este movimento é infinitamente longo na escala de tempo e, para as nossas observações, ele pode ser considerado como infinito. Estes exemplos servem para caracterizar em que ordem de grandeza a termodinâmica deve ser usada, ou seja, em sistemas grandes o suficiente para serem vistos a olho nu ou em microscópios; e em temperaturas não muito próximas do zero absoluto, onde ocorrem os fenômenos de supercondutividade em hélio líquido, por exemplo, que alteram as propriedades termodinâmicas do sistema (Pauling, 1970).

18

CARLOS PIMENTEL

A termodinâmica clássica tem como fundamento a impossibilidade do “moto-continuum”, e isso define a ordem de grandeza de suas observações como sendo macroscópica. Além disto, ela não lida com mecanismos que são vistos na mecânica, mas sim com a geração de potência (energia) química, osmótica, elétrica ou de outras formas, que por sua vez permitirão a ocorrência dos mecanismos. Portanto, a termodinâmica clássica permite prever a direção em que um sistema vai se modificar espontaneamente, quando liberado de suas barreiras; além disso, ela fornece relações, como a constante de equilíbrio de uma reação, ou o potencial osmótico de uma solução e sua pressão de vapor, ou ainda o potencial eletroquímico de uma membrana, que caracterizam o sistema em observação (Nobel, 1999). O estudo desta disciplina leva, portanto, a uma visão mais ampla do meio que nos circunda, e, portanto, do universo, transcendendo os seus mecanismos.

1.2 • PRIMEIRA LEI DA TERMODINÂMICA

O conceito de trabalho é familiar a todos, assim como a idéia do produto força vezes distância, como sendo uma medida de trabalho. Esta é uma função extremamente útil, e é importante se conscientizar disso, pois conceitos como Entropia ou Energia Livre, expressos adiante, são menos evidentes no dia-a-dia, que a idéia de trabalho. Por exemplo, se o sistema em estudo contém um corpo em movimento, o produto 1/2 mv2 (m sendo a massa do corpo e v a sua velocidade) representa o trabalho realizado, quando uma força é aplicada ao corpo. Portanto, há uma correlação entre uma forma de energia aplicada (a força) e o trabalho produzido. Isto leva ao princípio de que energia é necessária para ocorrer trabalho, o qual produzirá mudanças, de diferentes formas, naquele corpo (ou sistema), como movimento, deformação etc. Estas mudanças dão uma idéia de que “algo” está sendo armazenado, quando a mudança se dá em uma direção, ou sendo liberado, quando na direção oposta. “Algo” que, na ausência de atrito, por exemplo, nunca seria perdido. Por isto, basta chamar-se esse “algo” de energia, e reconhecer que ela existe em diferentes formas, e chega-se ao princípio da conservação da energia (Spanner, 1964).

Quando a força de fricção atua em sentido contrário ao movimento do corpo, há uma tendência de aumento da temperatura, causada pelo calor transmitido, que é uma outra forma de energia. O aumento da temperatura reflete o aumento da energia cinética das moléculas do corpo ou, como exemplos mais comuns, de um gás que é aquecido, ou da água que ferve e

19

A RELAÇÃO DA PLANTA COM A ÁGUA

evapora-se, quando posta no fogo. A água aquecida evapora, passando do estado líquido para o gasoso, devido ao aumento da energia das moléculas, causado pelo aquecimento, e que é percebido pelo aumento da temperatura. O mesmo ocorre com o gelo passando ao estado líquido, quando recebe calor. Nestes processos, as moléculas aquecidas por uma fonte externa ao sistema aumentam sua energia (de vibração, excitação, rotação etc.), e um fator específico percebido pelos átomos de água é que a aquisição de energia sob a forma de calor aumenta o caos, isto é a desorganização do sistema (aumentando a dispersão desses átomos, quando passam de um estado para outro, por exemplo), enquanto a aquisição na forma “mecânica” de trabalho não tem este efeito. Quando um gás simples é comprimido lentamente em contato com um banho termostatado, o trabalho realizado pela compressão se converte exatamente na mesma quantidade de calor produzido pelo sistema (Fermi, 1936).

Por outro lado, quando uma mistura de gases reativos, como hidrogênio, nitrogênio e amônia, por exemplo, é comprimida, similarmente, o calor produzido excede o trabalho de compressão e percebe-se que a reação química é direcionada para um aumento da concentração de amônia, equivalente à diminuição da concentração dos outros dois componentes. A expansão destes gases para o estado inicial restaura as concentrações dos gases no começo do processo. Portanto, da mesma forma que a energia potencial pode ser associada com o movimento de um corpo, no princípio mecânico de conservação de energia, a energia química potencial pode ser associada à capacidade de reação dos gases, e é classificada como uma das categorias de energia, mantendo a primeira lei da termodinâmica. E, assim, quando uma energia química potencial é incluída no processo, o princípio ainda é mantido, pois a energia não pode ser criada nem destruída, só transformada, durante a compressão daquela mistura de gases (Stadler, 1989).

Assim sendo, as formas de energia que um sistema material possui podem ser divididas em dois tipos: aquelas em que a energia é mantida numa forma dinâmica, e aquelas que são estáticas (Libardi, 1995). A primeira forma é normalmente a energia cinética e a parte cinética da energia térmica, como a vibração molecular; já a segunda é a energia potencial, que está associada com a gravidade, a deformação elástica e a configuração química. Contudo, calor e trabalho não pertencem a esta classificação, pois a energia não é mantida nessas formas. O trabalho e o calor são conceitos que emergem, quando se considera como a energia é passada de um sistema material para outro (o sistema A passa energia, do tipo trabalho ou do tipo calor, para o sistema B). Por isso, trabalho e calor são melhor vistos como formas de

20

CARLOS PIMENTEL

transmissão de energia. Outrossim, quando, por exemplo, um projétil atinge uma parede, o sistema “parede” absorve exatamente a mesma quantidade de energia que o projétil tinha em movimento, enquanto em processos químicos e de mudança de fase, como a evaporação da água, o aumento da energia térmica do sistema pode ser bastante inferior ao calor absorvido, pois, neste caso, uma forma “latente” ou química de energia é bloqueada, como uma energia potencial (Spanner, 1964).

Para deduzir-se a formulação matemática da primeira lei da termodinâmica, deve-se fazê-lo para um sistema fechado (que é um sistema onde não há troca de matéria com o meio e, portanto, a sua quantidade é fixa; no caso contrário, quando há troca de matéria entre o sistema e o meio, ele é chamado de sistema aberto), segundo Chagas (1999). Por exemplo, considerando-se 100 gramas de água em dois estados, 1 e 2, onde o sistema 1 está na temperatura de 20°C com 1atm de pressão, e o sistema 2 está a 100°C com também 1atm de pressão. Os sistemas podem se interconverter, sem variação de matéria, adicionando-se ou removendo-se diferentes formas de energia, como trabalho ou calor. Outra consideração a ser feita é que existem infinitas formas de trocas de energias (ou de caminhos) entre os sistemas 1 e 2. Por exemplo, aquecendo a água em um recipiente sob um bico de Bunsen (adição de calor), até atingir 100°C; outra seria sacudir esse recipiente violentamente até aquecer a água na temperatura desejada (trabalho mecânico), ou ainda mergulhar uma resistência elétrica dentro do recipiente com água (trabalho elétrico), ou mesmo usar parte de um método e parte de outro, fornecendo parte da energia como calor e parte como eletricidade. Neste último caso, na transição do sistema 1 para o 2, parte da energia é transmitida com calor (Q) e parte com trabalho (W), e juntos constituem a quantidade de energia total que variou entre os sistemas (Q + W) (Fermi, 1936). Portanto, a quantidade de energia (Q + W) é independente de tudo, exceto dos estados inicial e final, o que leva ao conceito de cada um dos sistemas possuir uma energia interna (U), e que a mudança entre os dois estados é dada por:

U2 - U1 = ∆U = Q + W (eq. 1.1)

A primeira lei da termodinâmica, portanto, introduz uma outra função U, chamada de energia interna do sistema, que é considerada como uma variável de estado, pois ela é fixa e estabelecida quando o estado do sistema é específico e determinado. Da mesma forma, o volume também é uma propriedade do sistema, com a diferença que sua magnitude é desconhecida. Portanto, a energia interna de um sistema pode ser aumentada

21

A RELAÇÃO DA PLANTA COM A ÁGUA

de duas formas: aplicando um trabalho sobre o sistema (como comprimindo- o ou distendendo-o [±PV] ou aplicando uma fricção), ou colocando-o em contato com outro corpo aquecido de forma que absorva calor (Fermi, 1936).

A energia interna do sistema pode ser claramente classificada como sendo uma propriedade extensiva do sistema, pois sua magnitude depende do tamanho do sistema (quantidade de matéria deste). Outros exemplos de propriedades extensivas são a massa, o volume, o número de moles, a carga elétrica, a área e o calor de um sistema, assim como, ainda a ser definida, a entropia. Ao contrário das propriedades extensivas, as propriedades intensivas do sistema não dependem do tamanho do sistema, como por exemplo, a temperatura, a pressão, a tensão superficial, o potencial elétrico e, ainda também a ser definido, o potencial químico de uma substância (Chagas, 1999).

Se dois sistemas são estudados juntos, a energia interna total é a soma da energia interna de cada um dos sistemas e, portanto, a energia interna de um sistema aberto (que tem variação da quantidade de matéria) pode ser aumentada pela adição da matéria.

Primeira lei da termodinâmica: - A energia do universo é conservada. - No sistema isolado (que é um sistema fechado, onde, além de não haver entrada de matéria, não há entrada ou saída de energia), a soma de todas as formas de energia, incluindo mecânica, química ou térmica, permanece constante. - Em qualquer transformação de um sistema fechado, o aumento de energia interna do sistema é igual ao trabalho aplicado sobre o sistema somado ao calor absorvido por ele.

Deve-se ressaltar que W e Q não são propriedades do sistema, como U, pois pode-se ter a mesma U com diferentes valores de W e de Q. Enquanto o coeficiente ∂U / T define propriedades de um sistema de matéria (a capacidade térmica), ∂Q / T não tem este significado, pois Q pode ter qualquer valor arbitrário (Spanner, 1964).

1.3 • SEGUNDA LEI DA TERMODINÂMICA

Após a dedução da primeira lei da termodinâmica, pode-se discutir o que é uma das mais famosas de todas as leis da natureza. A primeira lei foi deduzida a partir do fato que energia é um dos constituintes da natureza, que pode mudar de forma, entre duas condições da matéria, sem contudo mudar em quantidade. A energia é algo que não pode ser criado nem destruído,

22

CARLOS PIMENTEL

ao menos dentro do nosso conhecimento, e é sempre fixa na sua quantidade total (Pauling, 1970).

A segunda lei da termodinâmica leva em conta um outro aspecto dos eventos naturais. Ela estipula, como aparenta ser reconhecido pelo mais profundo nível do inconsciente humano, que existe uma irrevogabilidade dos fatos no universo, e uma ação, ou mesmo um pensamento, uma vez realizado, não pode voltar atrás. É possível modificar ou cancelar alguns de seus efeitos, mas o status quo existente antes do seu efeito não pode ser recuperado (Anderson, 1996).

Qualquer acontecimento ao nível de matéria e de energia, como dissolver um sal em uma solução, a combustão de uma substância ou a evaporação da água, tem sua característica de irrevogabilidade. Isto não quer dizer que não seja possível voltar-se à situação original, evaporando a solução para recuperar o sal ou condensando a água evaporada; porém, isto tem um custo. A dissolução do sal ou a evaporação da água são processos espontâneos, que ocorrem numa direção e, a menos que haja alguma interferência, ocorrerão sempre naquele sentido; todo processo espontâneo deixa sua marca no mundo físico. Portanto, todos os acontecimentos, na natureza física, envolvem um certo grau de irreversibilidade. Estes processos ocorrem espontaneamente numa direção mas não em outra e, depois de ocorrido, algo foi perdido na soma total de coisas, que não é recuperável, e isto é o conceito da irreversibilidade termodinâmica. Outros exemplos seriam: a água que desce uma cachoeira pode ser transportada de volta ao alto da cachoeira, uma pedra que rola um morro pode ser transportada para o alto do morro, ou um balão de ar quente subindo na atmosfera pode ser transportado para baixo, porém através de um novo processo que necessita de energia e de trabalho. Todos estes processos espontâneos liberam energia, como numa chama, que é um exemplo bem evidente, ou em processos de difusão de moléculas, em gases ou em soluções, onde é menos evidente a liberação de energia, pois esta é pequena. Mas em todos estes casos é possível obter-se trabalho, por menor que seja. Por exemplo, o contato entre dois compartimentos, um com uma solução aquosa de sais e outro com água, ambos separados por uma membrana semi- permeável, pode produzir trabalho, com a passagem de água através da membrana para o compartimento onde estão os sais, como ocorre numa célula viva. Não existe limite inferior para a capacidade de gerar trabalho num sistema; o que existe é o limite superior, máximo, de gerar trabalho (Spanner, 1964).

23

A RELAÇÃO DA PLANTA COM A ÁGUA

Segunda lei da termodinâmica: - A entropia do universo nunca diminui. - Todo processo espontâneo na natureza pode produzir trabalho e para reverter esse processo é necessário aplicar trabalho no sistema.

Por exemplo, dois processos comuns na natureza: a evaporação e a condensação da água. Nas circunstâncias favoráveis para que um dos processos ocorra espontaneamente, o outro precisa da aplicação de trabalho para acontecer. O vapor d’água do ar condensa-se na superfície do solo durante a madrugada, com o abaixamento da energia térmica do ar, percebida pela temperatura ambiente; e, durante o dia, com o aquecimento do ar pelos raios solares, e aumento da sua temperatura, a água evapora-se do solo para o ar. Para inverter os processos, em cada uma das duas situações tem de haver gasto de energia.

Outro tópico importante neste assunto é que a energia não pode ser transformada em trabalho sem que haja alguma perda que não é recuperável como trabalho, como, por exemplo, sob a forma de calor. O atrito em máquinas vem sendo combatido há muito tempo, para evitar o desperdício de trabalho, sem que o homem tenha conseguido produzir o moto-continuum. O calor gerado pelo atrito não pode ser recuperado sob a forma de trabalho, o que causa perdas na quantidade de trabalho que poderia ser produzido pelo sistema. Por isto, todo processo que gera trabalho perde parte do seu potencial de geração de trabalho sob a forma de calor, o que é irreversível. Porém quanto menos calor for produzido no processo, maior a capacidade de gerar trabalho. O calor pode ser convertido em trabalho, mas uma quantidade deste calor é usada para “pagar” a conversão, o que vai diminuindo gradualmente a capacidade do sistema produzir trabalho. Parte da energia do sistema é perdida com o elemento da irreversibilidade, que não produz trabalho (Thellier & Ripoll, 1992).

Quando um sistema sofre uma transformação de um estado 1 para um estado 2, ele sofreu uma mudança. Poderia haver uma forma de medir-se esta mudança? E esta medida poderia ser usada para comparar diferentes tipos de mudanças em sistemas distintos? Por exemplo, uma mudança num sistema onde está ocorrendo difusão poderia ser comparada com um sistema sofrendo uma reação química ou uma expansão de volume? Este é um exemplo comum na fisiologia, pois a entrada de íons na célula através da plasmalema é acoplada à atividade de uma ATP-ase transmembranar, que gera, através da extrusão de prótons, o potencial eletroquímico necessário à

24

CARLOS PIMENTEL

passagem do íon para o citoplasma. A principal fonte de energia para os processos biológicos é o sol e, através da fotossíntese, esta energia radiante é transformada e estocada nas ligações químicas da molécula de ATP, que é a moeda energética dos sistemas biológicos. Visto que existe um limite máximo de capacidade de produzir trabalho no sistema, esta medida poderia ser usada para comparar diferentes tipos de mudanças (elétrica, química, fase, volume etc.). Uma mudança metabólica pode ser ligada a um processo de transporte membranar, em que os dois processos são equivalentes nesta medida de mudança. Por exemplo, o número de moles de ATP consumidos para transportar um mol de um determinado íon através da plasmalema (Nobel, 1999).

Esta medida é a variação de energia livre, que será discutida adiante, mas que é dependente de temperatura constante para ser estabelecida, o que não satisfaz a necessidade de uma medida para a perda da capacidade de gerar trabalho, quando ocorre variação de temperatura. Portanto, a qualidade da energia térmica é inferior à da energia de trabalho, pois um sistema que produz trabalho pode transmitir energia para qualquer outro sistema, enquanto um sistema que produz energia térmica só pode transmiti-la para outro sistema que tenha uma temperatura inferior. Por isso o calor, energia térmica, sob altas temperaturas é menos restritivo, em seu uso, do que o calor sob baixas temperaturas. Portanto, o calor tem um valor que é relacionado à temperatura do sistema, e a baixa temperatura torna o calor menos utilizável. O calor, em um processo reversível e espontâneo, pode produzir o máximo de trabalho; contudo, quando trabalho é convertido em calor, parte da energia é perdida nesta medida de irreversibilidade, como o aquecimento de um motor em funcionamento. Se dividirmos o calor produzido pela T do sistema (Q / T), pois a perda de calor é dependente da temperatura do sistema, como visto anteriormente, teremos uma medida desta irreversibilidade da natureza. Esta medida é chamada de entropia, e é uma medida da mudança sofrida pelo sistema, sendo uma propriedade extensiva, pois é dependente da quantidade de matéria do sistema (Fermi, 1936).

Supondo-se um gás num estado 1, com P1, V1 e T1, se transformando em um estado 2, com P2, V2 e T2, a sua conversão para o estado 2 pode se dar de infinitas formas, passando por diferentes caminhos e estados intermediários. Porém, a variação de energia entre estes dois estados, independe do caminho percorrido, e pode ser descrita, segundo a primeira lei da termodinâmica, como sendo:

U2 - U1 = ∆U = Q + W, ou Q = ∆U – W (eq. 1.2)

25

A RELAÇÃO DA PLANTA COM A ÁGUA

Visto que W = P ∂V, mas o trabalho é realizado sobre o sistema e portanto W = -P ∂V, e se a temperatura entre os dois estados variou em ∂T, o aumento em energia interna pode ser dado por Cv ∂T, onde Cv é o calor específico do gás, a volume constante, numa mudança infinitesimal do sistema (Chagas, 1999). Segundo Pauling (1970), o calor específico de uma substância é a quantidade de calor necessária para aumentar em um grau (°C) a unidade de matéria (1 mol ou 1 g), sem mudança de fase. Portanto, a variação de calor poderá ser quantificada por:

∂Q = Cv ∂T + P ∂V (eq. 1.3)

o que estipula que o calor fornecido ao sistema deve ser igual à soma do aumento de energia interna do gás e do trabalho realizado. Se dividir-mos ambos os lados da equação por T, ter-se-á:

∂Q / T = Cv ∂T / T + P ∂V / T (eq. 1.4)

como PV = RT (quando não há variação de n, como no caso acima com o gás), ou P / T = R / V, substituindo-se na equação:

∂Q / T = Cv / T ∂T + R / V ∂V (eq. 1.5)

ao integrar-se as variações de fase do estado 1 ao estado 2, ter-se-á: ∫∂Q / T = ∫Cv / T ∂T + ∫R / V ∂V (eq. 1.6)

e esta quantidade ∫∂Q / T = ∆S é a medida de entropia, que é medida da irreversibilidade do processo, da mudança, ou do grau de desorganização deste (Nobel, 1999). Da mesma forma, para a energia interna do sistema U somente variações na entropia são definidas e não valores absolutos, assim como, para as outras variáveis termodinâmicas, a entropia de um sistema é avaliada no equilíbrio. Com este novo conceito e variável, a segunda lei da termodinâmica pode ser expressa de diversas formas:

- O calor não vai fluir por si mesmo de um corpo frio para um corpo quente. - Todo processo irreversível perde uma quantidade de potencial de trabalho, que poderia ser obtida caso fosse um processo reversível. - A entropia do Universo aumenta continuamente.

O princípio de aumento contínuo da entropia é um dos mais genéricos da termodinâmica, e se aplica a todos os corpos físicos, incluindo o próprio universo, o qual pode ser considerado como sendo um sistema fechado (Fermi, 1936). Apesar de ser aplicável em todos os processos, a entropia não é um parâmetro conveniente para a fisiologia, por não ter um cálculo simples. Uma outra variável da termodinâmica do sistema deve, portanto, ser usada.

26

CARLOS PIMENTEL

1.4 • ENTROPIA E ENERGIA LIVRE

Supondo-se um sistema fechado, é claro, propenso a uma mudança espontânea, mas que foi momentaneamente bloqueado por uma barreira física ou química, como uma colher de açúcar sobre um copo d’água ou um anticatalítico em uma reação enzimática. Caso a barreira seja retirada, e o açúcar vertido no copo, a mudança espontânea se inicia: a solubilização do açúcar dentro d’água. O sistema sofreu uma transformação, porém sem troca de energia (U2 = U1, ou ∆U = 0). Se esse experimento for repetido de forma a ser acoplado a um processo para gerar trabalho, como por exemplo, a dissolução do açúcar em um cilindro com um pistão semi-permeável, colocado acima do fundo do cilindro. Ao passar pelo pistão semi-permeável, para a solução abaixo deste haverá um aumento do volume abaixo do pistão induzindo um deslocamento do pistão. De onde virá a energia para promover este trabalho, pois ∆U = 0? A única resposta é que o sistema retira energia térmica do meio, produzindo trabalho com esta energia; com isso, haverá aumento da entropia do sistema. Voltando ao primeiro caso, sem o pistão, que tem o mesmo estado final, pode-se concluir que também houve aumento da entropia neste primeiro caso e, portanto, em qualquer processo espontâneo, num sistema isolado, há um aumento da entropia (Nobel, 1999). Isto ocorre num sistema isolado, onde ∆U = 0 e ∆V = 0; quando há variação destes parâmetros, e troca de trabalho com o meio, pode haver diminuição da entropia do sistema, mas haverá aumento no meio externo, na vizinhança, e a entropia do universo vai aumentar.

Por exemplo, numa reação enzimática celular, na qual não haja variação da temperatura do sistema, para a fisiologia o que interessa são as quantidades das substâncias nos dois lados da equação da reação, em função de alguma propriedade que possa indicar o sentido desta. O conhecimento da entropia das substâncias em si não indica o sentido da reação, pois pode haver aumento ou diminuição desta, em função da sua relação com outras reações acopladas (no meio exterior ao sistema), por exemplo.

Quando a reação ocorrer dentro de uma bomba calorimétrica, que tem suas paredes condutoras de calor, pode-se manter a temperatura interna constante, com o auxílio de um banho termostatado; além disto, suas paredes são rígidas, portanto não havendo variação de volume, e por isso também não há trabalho produzido. Como resultado da reação, calor será produzido, o que pode ser facilmente medido, sendo equivalente a -∆U da reação (o sinal é negativo pois houve liberação de calor). Já que a variação de entropia foi

27

A RELAÇÃO DA PLANTA COM A ÁGUA

definida como ∆S = Q / T e, conseqüentemente, Q = T ∆S; e houve uma variação da energia interna -∆U, pode-se concluir que o trabalho máximo que pode ser obtido na bomba calorimétrica é dado, segundo Stadler (1989), por:

Wmáx = -∆U + T ∆S (eq. 1.7)

Este Wmáx do sistema em estudo é uma nova função, que foi chamada de F. Outra consideração a ser feita é que, para um processo espontâneo, o sinal da quantidade (-∆U+ T ∆S) deve ser positivo, +∆U - T ∆S = ∆F (F2 deve ser menor que F1, numa mudança do estado 1 para o 2). Portanto, se a reação tiver um valor -∆F, ela não é espontânea. Este é o conceito da energia livre de um sistema (Spanner, 1964).

Energia Livre de Helmholtz e de Gibbs

O termo “Energia Livre” deixa o fisiologista mais à vontade, pois é um conceito comum em suas discussões e certamente muito mais familiar do que o conceito de entropia.

Na dedução feita acima (+∆U - T ∆S = ∆F, para uma reação espontânea, pois F2 < F1), ∆F representa o trabalho máximo que pode ser obtido do sistema, quando não há variação de volume no sistema, como no sistema solo, por exemplo, e esta quantidade é chamada de energia livre de Helmholtz (Libardi, 1995).

Contudo, considerando uma reação bioquímica ou biofísica numa célula, sabe-se que esta ocorre num sistema que primeiro mantém a temperatura constante, sem mudanças substanciais. Caso contrário, o tecido esquentaria, podendo entrar em colapso. Isto é a termoestabilidade de um tecido. Em segundo lugar, o sistema mantém a pressão imutável, normalmente sem grandes variações, com valores próximos da pressão atmosférica. Pode haver variação na pressão de turgescência, causada pela entrada de material na célula, mas levando-se em conta todo o simplasto e apoplasto do tecido, a pressão do tecido se mantém relativamente constante, pois o que entrou no simplasto saiu do apoplasto. Esta constância da pressão do sistema adiciona um novo elemento ao balanço energético, pois, quando um processo espontâneo ocorre na célula, parte da energia livre do sistema, que decresce, é necessariamente absorvida como trabalho, na forma de variação do volume à pressão constante. Neste caso, que ocorre em sistemas biológicos, deve-se adicionar mais um termo à equação da energia livre, referente ao trabalho gerado pela variação de volume, tendo-se então, segundo Nobel (1999):

+∆U - T ∆S + P∆V = ∆G (eq. 1.8)

28

CARLOS PIMENTEL

G representa a chamada energia livre de Gibbs, pois, ao contrário da energia livre de Helmholtz, é usada em sistemas onde ocorre variação de volume, como é o caso dos sistemas biológicos. Por isto, a discussão, em termos de variações de energia, em sistemas biológicos, usa o conceito de energia livre de Gibbs, que representa o trabalho útil para o sistema (Anderson, 1996).

Portanto, em estudos nos sistemas biológicos, com variações de volume, o trabalho útil do sistema é obtido pelo cálculo da energia livre de Gibbs, enquanto em sistemas onde não há variação do volume, como no solo, faz-se uso da energia livre de Helmholtz.

Por exemplo, se um sistema fechado é considerado, então existe uma quantidade fixa de matéria nele. Se houver uma mudança espontânea de um estado 1 para um estado 2, a transformação pode gerar trabalho, e se ela for reversível, o trabalho será máximo; e, como foi dito para ∆U, o Wmáx (útil) depende somente dos estados 1 e 2, e não do caminho seguido na transformação. Este trabalho pode ser estocado (quando se levanta uma pedra a uma certa altura, ou na síntese de ATP) e, subseqüentemente, pode ser usado (ao largar a pedra ou na hidrólise do ATP). Nos dois sentidos das transformações, em condições isotérmicas, calor é retirado do meio para produzir trabalho em um sentido, e liberado do sistema ao realizar o trabalho, no outro sentido. Este máximo valor de trabalho, que pode ser obtido, é chamado de energia livre de Gibbs (Thellier & Ripoll, 1992).

Outro exemplo prático, comum na fisiologia, é o de um sistema consistindo de uma quantidade de uma solução de concentração c dentro de um cilindro, confinada sob um pistão semi-permeável, acima do qual existe água. Se a área do pistão é A, e o potencial osmótico da solução é dado por Ψπ, uma força A Ψπ deve ser aplicada sobre o pistão para manter o sistema em equilíbrio (este é o princípio de um osmômetro). Se uma pequena quantidade de moles de água (∂n) atravessar a membrana e passar para a solução, o pistão subirá ∂x, e A ∂x será o aumento do volume da solução. Este aumento de volume não é exatamente igual à diminuição do volume de água acima do pistão, cujo valor é a ∂n, onde a é o volume molar da água. Portanto, o trabalho realizado pelo pistão é: Ψπ = A ∂x = Ψπ a ∂n. Como este é o trabalho útil realizado, ele representa -∆G. Se, no mesmo exemplo, a pressão da água for reduzida da pressão atmosférica para a sua pressão de vapor no equilíbrio p0, e em seguida uma quantidade de água (∂n) for levada a se evaporar, com o vapor de água se expandindo isotermicamente para uma nova pressão p, haverá trabalho realizado. Assumindo que o vapor de água se

29

A RELAÇÃO DA PLANTA COM A ÁGUA

comporte como um gás perfeito, o trabalho realizado durante esta expansão será: RT ln p0 / p ∂n, que também representa -∆G. As duas equações podem ser usadas para obter-se uma relação entre o potencial osmótico da solução e sua pressão de vapor (Slatyer, 1967):

Ψπ a ∂n = RT ln p0 / p ∂n ⇒ Ψπ = RT / a ln p0 / p (eq. 1.9)

Alguns pontos devem ser realçados, para não se cometer erros. O primeiro é que a variação da energia livre de Gibbs só tem valor quando o processo estudado é isotérmico (Nobel, 1999). Outro erro comum de fisiologistas é o comentário sobre “água livre” e “água ligada” a macromoléculas em sistemas celulares, ou os íons do “espaço livre” e os do “volume osmótico” (no vacúolo, por exemplo) da célula. Nos dois casos, o componente “livre” faz parte do sistema, o que é um erro, pois a variação da energia livre de Gibbs, segundo a lei da conservação de energia, não pode ser associada a uma “parte” do sistema. Portanto, a energia livre de Gibbs da água, e conseqüentemente o potencial da água, na célula é dada por toda a água celular (livre mais a ligada) e o potencial eletroquímico dos solutos celulares também é dado pelo total de solutos, do espaço livre e do volume osmótico (Slavik, 1974).

Portanto, a energia livre de um sistema não pode ser vista como uma parte da energia total de um sistema, no qual a outra parte da energia é de água ligada, por exemplo. A energia livre de Gibbs da água na célula leva em conta a água “livre” e a água “ligada” à estrutura ou a macromoléculas. A energia livre de Gibbs não pode ser vista simplesmente como uma forma de energia, mas sim como o potencial de produção de trabalho do sistema, sob certas condições, de que o sistema receba calor ou resfriamento quando necessário, para manter sua temperatura constante. Quando o sistema produz o máximo trabalho útil às custas de sua própria energia livre, como na célula viva, parte do trabalho usa sua própria energia interna (∆U), e parte do trabalho usa energia térmica oriunda do meio (T∆S). Ao usar esta energia externa, o sistema “paga” com uma certa degradação causada pelo aumento de sua entropia. As duas frações de energia, que compreendem o trabalho realizado, podem ter variações nas suas proporções. Algumas vezes a primeira fração é zero (gases perfeitos) e, em raros casos (numa bomba calorimétrica), a segunda é zero, mas em geral as duas existem (Anderson, 1996).

Outra consideração importante é que, nos sistemas isotérmicos, nos quais os fisiologistas trabalham, o estado de equilíbrio é determinado por condições de mínima energia livre. Isto implica em uma diminuição da energia interna (U) e uma tendência de aumento da entropia (S). Assim, a diminuição da energia livre de Gibbs mede o máximo trabalho útil disponível,

30

CARLOS PIMENTEL

sob condições de temperatura e pressão constantes. Considerando-se um sistema que muda de um estado (F1, P, V1) para um estado (F2, P, V2), onde F é a energia livre de Helmholtz, P a pressão no sistema, e V o volume deste, por definição, ter-se-á:

G1 = F1 + PV1 e G2 = F2 + PV2, subtraindo-se tem-se:

(G1 - G2) = (F1 - F2) - P (V2 - V1), e portanto:

-∆G = ∆F - P∆V

onde -∆F é a energia máxima total que pode ser obtida do sistema, e P∆V é o trabalho realizado pelo sistema expandindo-se do V1 para o V2. Relembrando que:

∆F = ∆U - T∆S e ∆G = ∆F - P∆V ⇒

-∆G = -∆U + T∆S - P∆V (eq. 1.10)

o decréscimo de energia livre de Gibbs corresponde ao máximo trabalho útil disponível, menos o trabalho realizado contra uma pressão externa.

Em sistemas biológicos, com variação de volume, a ação do meio ambiente geralmente mantém a temperatura e pressão constantes e, por isso, o uso da energia livre de Gibbs como variável é mais apropriado; além disto, a Termodinâmica mostra que esta energia necessariamente decresce nos processos espontâneos. Mas processos onde ocorre aumento da energia livre de Gibbs podem ocorrer nos sistemas biológicos acoplados a outros processos, onde haja um decréscimo maior de energia livre. Por exemplo, um processo endergônico (absorvendo energia) como a fixação biológica do nitrogênio atmosférico ocorre acoplado a um processo exergônico, como a oxidação de carboidratos na mitocôndria; ou a redução do N mineral a N orgânico, que ocorre nos cloroplastos, onde é gerado poder redutor (NADPH2) e energia química (ATP) nos fotossistemas. Contanto que haja um decréscimo na energia livre de Gibbs total, a termodinâmica não se opõe (Thellier & Ripoll, 1999).

Outro exemplo importante é um processo físico, como a ascensão da água até o alto de uma árvore, onde conjectura-se a participação de mecanismos ativos, com gasto de energia, para a sua realização. O processo genericamente consiste na passagem da água na forma de uma solução diluída no solo e na planta para a forma de vapor na câmara subestomática da folha. Neste caso, há uma grande diferença entre o valor da energia livre de Gibbs e de Helmholtz, pois uma grande alteração de volume ocorre no processo de mudança de fase da água, na câmara subestomática da folha. Por isso, a energia livre de Helmholtz não é usada para os estudos sobre as relações dos vegetais com a água. Voltando ao caso em discussão, um pequeno volume de água (v1)

31

A RELAÇÃO DA PLANTA COM A ÁGUA

do solo é retirado para a raiz e, sob a pressão ambiente no solo, que é essencialmente a pressão atmosférica (P), um trabalho Pv1 é realizado; essa mesma quantidade de água é perdida e evaporada da folha para a atmosfera no topo da árvore (v1), porém a pressão neste caso é a pressão parcial de vapor de água no ar (p), e não a pressão atmosférica total, e, portanto, um trabalho pv1 é realizado. O resultado líquido do processo total é o trabalho pv1 - Pv1, o que causa uma diminuição da energia livre de Gibbs, que é aceito pela termodinâmica. Contudo, em relação à temperatura, é sabido que a temperatura do solo e da folha são bastante distintas, e assim o uso da energia livre de Gibbs para avaliar o processo não é possível, o que é freqüente em sistemas extensos como uma árvore. Pode-se analisar a energia livre de Gibbs na absorção de água pela raiz e na evaporação da água na câmara sub- estomática separadamente, e estes valores podem indicar a possibilidade do fenômeno, havendo -∆G, mas nunca pode-se prever a taxa desse processo (Spanner, 1964).

1.5 • A CONDIÇÃO DE EQUILÍBRIO

As duas funções de energia livre, a de Helmholtz (F) e a de Gibbs (G) foram definidas anteriormente: F = U – TS e G = U + PV – TS.

Uma outra função útil para a termodinâmica é a Entalpia (H), que seria o “conteúdo calórico”, que é definida como sendo: H = U + PV. Portanto, a equação para a energia livre de Gibbs pode ser reescrita: G = H – TS, onde se nota que G tem a mesma relação com H, como F tem com U. Ao se diferenciar as três equações (Chagas, 1999), obtém-se:

∂F = ∂U - T∂S - S∂T; ∂G = ∂U + P∂V + V∂P - T∂S - S∂T; e

∂H = ∂U + P∂V + V∂P (eq. 1.11)

sabendo-se que ∂U = T∂S - P∂V ⇒ (eq. 1.12)

∂F = - P∂V - S∂T (eq. 1.13)

∂G = V∂P - S∂T (eq. 1.14)

∂H = T∂S + V∂P (eq. 1.15)

analisando um sistema em equilíbrio, ter-se-á energia interna e volume constantes, o que significa que ∂U e ∂V são iguais a zero. Analisando as quatro equações acima, a única onde as duas variáveis ocorrem juntas é a primeira e, com estes valores iguais a zero, o ∂S também tem de ser zero. Por isto, nestes processos, nos quais a energia interna e o volume não são variáveis, a condição

32

CARLOS PIMENTEL

de equilíbrio é de não haver variação de entropia. A mesma analogia pode ser feita para sistemas onde não haja variação de T e P, e a equação 1.14 mostra que não deve haver, neste caso, variação de energia livre de Gibbs (Nobel, 1999).

Portanto, todo sistema termodinâmico se move para o equilíbrio, e o critério para que haja equilíbrio é em direção à máxima entropia ou a mínima energia livre de Gibbs.

Isto implica que os processos espontâneos ocorrem nesse sentido, para o aumento da entropia (estado com máxima probabilidade de ocorrência) e/ou diminuição da energia livre, o que pode ser visto na natureza: a teoria do big-bang para a formação do universo, que se expande infinitamente; a rocha se desorganizando em partículas menores, que formarão os solos; a expansão de gases (maior entropia); o resfriamento gradativo da Terra; ou a água que desce a cachoeira (os dois últimos exemplos são de diminuição da energia livre de Gibbs). Os processos inversos só ocorrem com gasto de energia no sistema (Spanner, 1964).

Em sistemas termodinâmicos, lida-se com matéria e energia, e a análise da distribuição, ou dos arranjos de conteúdo, de energia e de matéria do sistema, deve considerar a tendência de aumento de entropia, para atingir- se o equilíbrio. Analisando-se o conteúdo de matéria somente, para simplificar, pode-se perceber que o aumento de volume significa um aumento de entropia, pois haverá maior distribuição dos componentes materiais do sistema. O processo de mistura de materiais, como no processo de osmose, também significa um aumento de entropia. Já no processo de imbebição ocorre uma diminuição da energia interna do sistema. Estes dois fenômenos são exemplos das variações nos dois termos da energia livre, U e TS (Thellier & Ripoll, 1992).

Por outro lado, a noção de entropia está associada ao grau de desordem de um sistema e, portanto, o equilíbrio é atingido com a máxima desordem do sistema. Na reação química de interconversão entre amido e glicose, ou de proteínas e aminoácidos, a tendência natural do processo é no sentido da produção de glicose e aminoácidos, não por ser um processo exergônico, mas sim pelo aumento de entropia (desorganização). A polimerização ou condensação de compostos em macromoléculas (síntese) implica em diminuição de entropia, pois aumenta a organização e, para isso, há necessidade de trabalho. Já o processo de hidrólise é um processo espontâneo (Anderson, 1996).

Estas considerações sobre energia livre e entropia do sistema podem ser aplicadas à célula ou mesmo aos seres vivos, que são sistemas altamente organizados, vide a arquitetura e organização estrutural de uma célula, que

33

A RELAÇÃO DA PLANTA COM A ÁGUA

representam arranjos de baixa entropia e, portanto, requerem gasto de energia. Por isto, o crescimento celular ou de um ser vivo requer energia metabólica, mas este processo, que retira energia do meio, causa a desorganização desse meio externo, e não pode ser mantido indefinidamente; a um dado momento, esta capacidade de desorganizar o meio, para manter a organização do sistema, a célula ou um ser vivo, deixa de funcionar, ocorrendo a morte e, conseqüentemente, desorganização do sistema (“do pó viemos e ao pó retornaremos”).

1.6 • O POTENCIAL QUÍMICO E OS SISTEMAS MEMBRANARES

Até agora a discussão sobre a noção de equilíbrio baseou-se em sistemas fechados, sem variação de matéria. Para a maioria das aplicações físicas da termodinâmica isso não é uma limitação, porém, para a fisiologia vegetal esse tipo de análise se torna problemático, pois os sistemas biológicos são, na maioria dos casos, sistemas abertos, onde ocorre entrada e saída de matéria. É o caso de uma organela celular, de uma célula ou mesmo de um órgão, nos quais existe um constante fluxo de água, minerais e substâncias orgânicas, que entram e saem desses sistemas, durante o seu crescimento e desenvolvimento. Do ponto de vista termodinâmico, o importante é que, associada à entrada de uma substância, haja a saída de uma outra, no sistema estudado, que estará, portanto, em equilíbrio estacionário (“steady state”), ou homeostase (Anderson, 1996).

Além disso, a fisiologia vegetal se interessa pelo metabolismo vegetal, isto é, a atividade bioquímica na célula, no órgão ou mesmo na planta inteira. Mesmo para a entrada de água na célula, hoje se sabe que não é um processo de simples difusão através da membrana celular, no antigo conceito de composição de membranas como um “mosaico-fluido”, em que a água se movimentaria de um lado para o outro da membrana sem grandes restrições; a entrada de água na célula pode se dar também por transporte através de canais estreitos, com um diâmetro pouco maior que o da molécula de água, que são chamados de aquaporinas. As aquaporinas controlam a difusão da água na raiz, principalmente na zona mais velha e suberizada, em função da pressão e das relações da água com outras moléculas, principalmente sob condições de baixa disponibilidade de água no solo (Steudle, 2001). Para o estudo desses processos, faz-se uso do conceito de potencial químico de uma substância, no caso da água, para a análise da probabilidade de ocorrer um fluxo dessa substância através de uma membrana, por exemplo (Slatyer, 1967).

34

CARLOS PIMENTEL

Antes de conceituar-se o potencial químico de uma substância, é bom lembrar alguns conceitos matemáticos, usados para quantificar grandezas termodinâmicas, que são as derivadas parciais. As derivadas parciais são usadas com freqüência na termodinâmica, pois, mesmo em casos simples como o de gases perfeitos, têm-se três variáveis: P, V e T. Por isso, é importante expressar as propriedades do sistema como derivadas parciais, o que permite analisá-lo de forma mais simples. Por exemplo, a derivada parcial (∂U / ∂T)v mede a variação da energia interna com a temperatura, quando o volume é mantido constante. Na maioria dos sistemas estudados em fisiologia vegetal (quando não existem forças elétricas e magnéticas), o volume constante significa que não há trabalho sendo realizado sobre ou pelo sistema e, assim, a variação em energia interna só pode ser aumentada pela absorção de calor. Portanto, a derivada parcial, acima citada, mede a quantidade de calor que entra no sistema para aumentar a sua temperatura em uma determinada quantidade, o que é a capacidade calórica do sistema, que, se for dividida pela massa do sistema, representará o calor específico. Para isso, supõe-se o sistema fechado, sem variação de matéria, o que quer dizer que há um determinado número de moles de matéria, n, que poderia ser incluído na derivada parcial: (∂U / ∂T)v,n (Stadler, 1989).

Porém em sistemas abertos, onde há entrada ou saída de matéria, surge a necessidade de utilizar-se uma classe específica de derivadas parciais, as quantidades parciais molares. Por exemplo, num sistema simples composto por um solvente e um soluto, se um certo volume v do soluto for adicionado à solução, o volume desta não será aumentado naquele exato valor v. O volume de um soluto seco, quando este é adicionado a uma solução, sofrerá mudanças, positivas ou negativas, quando o soluto interagir com a água. Por exemplo, a gelatina seca e sólida, quando misturada com água causará um aumento de volume acentuado, muito maior que o volume desta substância quando seca. Portanto, em soluções, o volume não é mantido enquanto a massa o é. Supondo o volume de uma solução como sendo V, contendo n1 moles do soluto e n2 moles do solvente, a derivada parcial (∂V / ∂n1)n2 representa a variação no sistema, subentendendo-se que o processo ocorre sem variação do número de moles do solvente. A adição de ∂n1 moles do soluto vai causar uma variação de ∂V no volume do sistema, e a relação entre ∂V e ∂n1 representa a variação de volume da solução com a adição de moles do soluto, caso esta adição não altere qualitativamente o processo. Logicamente, P e T devem ser mantidas constantes. Portanto, (∂V / ∂n1)T,P,n2 representa o volume parcial molar (1) do soluto 1. Este volume é chamado de parcial pois pode haver outros solutos em uma solução(n2, n3, n4 etc.) (Spanner, 1964).

35

A RELAÇÃO DA PLANTA COM A ÁGUA

O mesmo tipo de relação pode ser aplicado para a energia livre de Gibbs por mol de uma substância, em que esta quantidade parcial molar [(∂G / ∂n1)T,P,n2] tem importantes propriedades, e recebe o nome de potencial químico (µ) da substância 1. Esta relação mede a diminuição de energia livre de Gibbs (G) do sistema, quando o componente 1 é retirado do sistema. Tendo em vista que na fisiologia vegetal, G é medida em condições de temperatura e pressão constantes, estes dois termos podem ser retirados da equação [(∂G / ∂n1)n2]. Se o sistema contiver diversos solutos, como é o caso de uma célula, por exemplo, pode-se estabelecer, para G e V (mas que também pode ser estendido a todas as outras variáveis, como S, U e H), que a energia livre de Gibbs do sistema é dada, segundo Nobel (1999), por: G = n1(∂G / ∂n1)+ n2 (∂G / ∂n2)+ n3 (∂G / ∂n3)+…, e portanto:

G = n1µ1 + n2µ2 + n3µ3 +… (eq. 1.16)

e o volume é dado por: V = n1 (∂V / ∂n1) + n2 (∂V / ∂n2) + n3 (∂V / ∂n3) +…

e portanto:

V = n11 + n22 + n33 +… (eq. 1.17)

agora supondo um sistema simples, consistindo de duas fases A e B, separadas por uma membrana semi-permeável, elástica, onde a fase A é composta por água pura e a fase B, envolvida pela membrana, contém água mais um soluto (como uma célula imersa em um copo de água). Que propriedade da água determina quanto e por que a água se move de A para B? Sabe-se, instintivamente, que a água vai se mover de A para B até atingir o equilíbrio de concentração. Um exemplo mais evidente é o de dois sistemas com energia térmica diferente: sabe-se que haverá transferência de calor de um para outro e a temperatura dos dois sistemas serve para quantificar isso. Na situação do movimento de água, o potencial químico da água (µa) em cada um dos sistemas pode ser uma boa opção, e deve-se definir esta variável, de forma a quantificar as unidades de matéria que passarão de um potencial químico para outro, que será equivalente à quantidade de trabalho realizado no sistema de duas fases, pela segunda lei da termodinâmica (Stadler, 1989). Este trabalho é, evidentemente, proporcional a quantidade de matéria que passa de uma fase para a outra (Kramer & Boyer, 1995). Esta dedução sugere que:

(µaA - µaB) ∂n = Wmáx (eq. 1.18)

Esta definição de potencial químico é semelhante à do potencial elétrico (medido em volts), que pode ser visto num livro elementar de eletricidade. Contudo, a discussão simplesmente baseada na quantidade de

36

CARLOS PIMENTEL

matéria que passa da fase A para a fase B não é realmente precisa, pois, no momento em que matéria é retirada da fase A, as variáveis físico-químicas desta fase, como volume, pressão e entropia, sofrerão mudanças. Pode-se imaginar este processo ocorrendo à temperatura constante, com variação ou de volume ou de pressão, por exemplo. Se o processo for reversível, sob temperatura e pressão constantes (somente o volume é variável), o trabalho máximo obtido será equivalente ao decréscimo de energia livre de Gibbs do sistema (Nobel, 1999), e portanto:

(µaA - µaB) ∂n = ∂na (∂GA / ∂na) - ∂na (∂GB / ∂na) (eq. 1.19)

onde as derivadas parciais são dadas sob temperatura e pressão constantes. Pode-se ter a definição genérica do potencial químico como sendo:

µi = (∂G / ∂ni)T, P, nj (eq. 1.20)

ou, através de outras variáveis físico-químicas, como foi definido originalmente por Gibbs:

µi = (∂U / ∂ni)S,V, nj (eq. 1.21)

ou ainda: µi = (∂H / ∂ni)S, P, nj (eq. 1.22)

O uso do potencial químico para definir o estado energético de um soluto ou de um solvente em um sistema implica que: um soluto vai se movimentar de uma fase mais concentrada, de maior potencial químico, para outra fase menos concentrada, de menor potencial químico; ou o solvente, a água por exemplo, se movimenta da fase menos concentrada em solutos (mas mais concentrada em solvente) para a mais concentrada em solutos (menos em água) e este movimento cessa quando os dois potenciais químicos se igualarem. Portanto, o equílibrio supõe que os potenciais químicos dos solutos e do solvente, nas duas fases do sistema, sejam iguais:

µA = µB

Em química, supõe-se, para o equilíbrio, que a atividade química (a) dos solutos nas duas fases sejam iguais, em vez dos potenciais químicos, não havendo contradição na igualdade de potencial químico ou de atividade química para a condição de equilíbrio, pois a atividade de uma substância é simplesmente uma função exponencial de seu potencial químico (Stadler, 1989):

ai = exp (µi - µi 0 / RT), ou que µi - µi

0 = RTln ai (eq. 1.23)

onde µi 0 é uma constante determinada arbitrariamente, como uma

referência, que será discutida a seguir. A vantagem do uso da atividade química é que esta variável se refere à concentração da substância (que é

37

A RELAÇÃO DA PLANTA COM A ÁGUA

multiplicada pelo seu coeficiente de atividade química), e esta relação se equivale àquela utilizada para a relação entre trabalho máximo e variação de energia livre de Gibbs, em gases em expansão ou diluições osmóticas, descritas anteriormente (Anderson, 1996).

O potencial químico deve ser descrito como um coeficiente diferencial, pois ocorre variação de matéria no sistema (∂n), devido ao movimento do soluto de uma fase para outra, por exemplo, introduzindo uma quantidade de energia livre (∂G), cuja magnitude absoluta é indefinida, pois está-se lidando com variações de G. Esta indefinição é repassada ao valor absoluto de µ, que deve também ter um valor zero, de referência, determinado arbitrariamente (µ0). No caso da água, o potencial de referência foi definido como sendo o potencial químico da água pura e livre (Slavik, 1974). Portanto, quando o sistema não é composto por água pura e livre, o seu potencial químico é menor que zero, e µa- µa

0 tem um valor negativo. Um sistema composto por água pura e livre tem uma maior capacidade de gerar trabalho, movimento, por exemplo, que um sistema composto por solutos e água. Se tivermos uma membrana semi-permeável (que permite a passagem de água mas não dos solutos) entre estes dois sistemas, a água vai se movimentar do sistema onde está livre para o sistema onde existem solutos, pois a energia livre por mol de água é maior no sistema com água pura e livre (Dainty, 1976). Em segundo lugar, deve-se considerar que o potencial químico é, como a temperatura, a pressão e a concentração, uma propriedade intensiva, que não depende, portanto, da quantidade de matéria do sistema. As propriedades intensivas exprimem as qualidades do sistema enquanto as extensivas indicam as suas quantidades. Quando se atenta para as variações de µ e de G, subentende-se que o sistema está modificando-se qualitativamente, em vez de variar sua composição somente, sem variar outras propriedades qualitativas como a temperatura ou a pressão. Por exemplo, numa folha dentro de uma garrafa fechada, a água, neste sistema, estará em duas fases, como líquido na folha e como gás na folha e na atmosfera dentro da garrafa. Depois de atingir- se o equilíbrio dentro da garrafa, a água terá o mesmo potencial químico em qualquer local dentro da garrafa: no cloroplasto ou na mitocôndria celulares, na parede celular, na câmara subestomática, ou na atmosfera em volta da folha (Spanner, 1964).

Em terceiro lugar, deve-se ressaltar que o potencial químico é uma importante variável entre as quantidades parciais molares e, na realidade, representa a energia livre de Gibbs parcial molar. Portanto, num sistema com vários solutos: G = somatório de ni µi, como já visto anteriormente e, como

38

CARLOS PIMENTEL

G = VP- ST, tem-se ∂G = VP- ST+ niµi, ou num sistema aberto onde adicionam-se solutos tem-se: ∂G = VP- ST+ somatório de niµi (Nobel, 1999). O que significa que a adição de solutos (∂n) a uma solução causa um aumento de G em ni∂µi. O mesmo raciocínio e dedução podem ser usados para as outras variáveis (como U ou H).

A determinação do gradiente de potencial químico entre a vizinhança e o sistema indica, por exemplo, a direção do movimento de uma substância, assim como a diferença de temperatura determina a transferência de calor, ou o gradiente de potencial elétrico determina a direção da corrente elétrica. É importante salientar-se que, se duas fases (A e B) estão em equilíbrio com outra fase (C) em relação ao movimento de uma espécie i, elas estarão, as fases A e B, em equilíbrio entre si; pois, se as fases A e B não estivessem em equilíbrio, e alguma quantidade de i passasse de uma para a outra, as duas fases sofreriam distúrbios, necessitando retirar ou ceder quantidades de i para a fase C, o que provocaria um movimento contínuo da substância i entre as 3 fases, e um inexistente “moto-continuum”. Outra ressalva é que a adição de um soluto causará um desequilíbrio momentâneo e, portanto, G não pode ser medida logo após esta adição do soluto, devendo-se aguardar o novo equilíbrio.

Portanto, como visto anteriormente, num sistema de duas fases separadas por uma membrana, o equilíbrio é atingido quando µaA = µaB. Assim, no citoplasma, repleto de complexas organelas e que está associado à parede celular e a outras células do tecido, a água no vacúolo estará em equilíbrio com o apoplasto somente se os processos metabólicos, envolvendo troca de energia, na região em estudo, não interferirem no movimento de água na célula (Thellier & Ripoll, 1992).

1.7 • O POTENCIAL QUÍMICO E A DESCRIÇÃO DA COMPOSIÇÃO DO SISTEMA

As propriedades de soluções diluídas são de grande importância para a fisiologia vegetal e, principalmente, nas relações de plantas com a água. Isto é evidente devido ao fato da vida ter surgido na água e que as reações metabólicas ocorrem na água, sendo esta o principal constituinte celular. Na célula, normalmente a concentração dos seus constituintes, sem contar as proteínas, é baixa, excetuando-se a acumulação de açúcares no néctar, na seiva do floema, ou em órgãos de reserva como os colmos da cana-de-açúcar, ou a acumulação de sais em plantas halófitas (Spanner, 1964).

39

A RELAÇÃO DA PLANTA COM A ÁGUA

Para se entender os efeitos dos constituintes nas relações da célula com a água, deve-se primeiramente quantificar a sua composição. Isto pode ser feito em unidades de massa (gramas) ou número de moles por unidade de volume (100 mililitros ou 1 litro), o que seria uma composição em percentagem (% p/v) no primeiro caso, ou a molaridade, no segundo caso. Estas duas formas de quantificação dos solutos têm suas vantagens quando se usa uma análise volumétrica mas, teoricamente, esta análise é inconveniente, pois estas formas de quantificação de solutos não levam em conta e, conseqüentemente, não especificam, a quantidade do solvente, no caso a água, que é o que interessa para avaliar-se o seu movimento. Em química, o que interessa geralmente é a quantidade do soluto e, por isso, estas formas de quantificação são bastante usadas; mas, para o estudo do potencial químico da água, o que interessa é a quantidade do solvente água. Quando se prepara uma solução 1 Molar (1M), coloca-se o soluto em um recipiente (este soluto tem um determinado volume) e completa-se o volume até um litro; mas, dependendo do volume do soluto, colocar-se-á um maior ou menor volume de água, que não fica especificado. Seria necessário consultar uma tabela de densidades, para saber-se a densidade do soluto e calcular-se o volume deste, para subtrair esse valor de um litro e, assim, calcular-se o volume de água adicionado à solução. Além disto, o volume pode variar com a temperatura ou a pressão. Por isto, é preferível usar formas de quantificação que tenham por base a massa do solvente, que é o caso da molalidade (m), que é definida como sendo a massa do soluto em moles por quilo do solvente, a água. Neste caso, o volume final da solução será maior que um litro, em função do volume do soluto em questão. Em soluções diluídas, os valores de M e m são muito próximos e, para uma primeira aproximação, a molaridade pode ser empregada. Estas unidades de composição são consideradas propriedades intensivas, pois dependem do tamanho do sistema (Nobel, 1999).

A medida da concentração em termos de moles (m), e não em gramas, está relacionada à molécula do soluto e, em termodinâmica, avalia-se a energia por molécula que entra ou sai do sistema. Fenômenos como a pressão osmótica, a variação dos pontos de fusão e de congelamento, ou da pressão parcial de vapor, estão relacionados com o número de moléculas existentes no sistema. Uma outra forma de relacionar-se o número de moléculas de um sistema é através da fração molar de uma espécie (xi), que é a relação entre o número de moles da espécie (nj) em relação ao número de todas as outras moléculas do sistema (somatório ni): xi = ni / somatório nj. Esta unidade seria mais interessante para avaliação do potencial osmótico pois, por exemplo, com a adição de uma molécula ao sistema, mas com propriedades

40

CARLOS PIMENTEL

mais próximas do solvente do que do soluto, esta adição seria comparável à adição do solvente. Neste caso, a fração molar seria uma unidade mais indicada que a molalidade, pois ela vai variar com a adição do soluto, enquanto a molalidade não. Contudo, a molalidade é mais facilmente mensurável, e deve-se lembrar que, em soluções diluídas, como nos sistemas biológicos, a vantagem da fração molar é muito pequena (Anderson, 1996).

Após estas conjecturas, o próximo passo é buscar uma relação entre o potencial químico e as variáveis do sistema, como molalidade, temperatura e pressão. Como visto anteriormente, na dedução da energia livre de Helmoltz e de Gibbs (item 1.4), quando um mol de um soluto com uma concentração cA (no caso citado, a discussão foi feita sobre a pressão gerada pela expansão de um gás) passa para uma outra fase, de concentração mais baixa (cB), o trabalho máximo, em condições isotérmicas, é dado por: Wmáx = RT ln cA / cB(por mol). De acordo com a definição do potencial químico, o trabalho máximo que pode ser obtido entre duas fases de um sistema, separadas por uma membrana, é igual à diferença entre os potenciais químicos das duas fases (Thellier & Ripoll, 1992), e portanto:

Wmáx = µaA - µaB = RT ln caA / caB (eq. 1.24)

A princípio, esta fórmula, onde c pode ser substituída por m ou por x, só é válida quando ocorre movimento de um único soluto entre as fases, sem transferência do solvente (água) entre as fases. Para soluções diluídas, como é o caso dos sistemas biológicos como a célula, mesmo que haja movimento de outros solutos ou do solvente água, a formulação acima é relativamente precisa; porém, para soluções concentradas, a fórmula pode ser bastante inexata. Além desta incorreção, deve-se ressaltar que, como discutido anteriormente, o uso da fração molar (x) é mais preciso que o da molalidade (m), e esta mais precisa que o da molaridade (M). O mais correto cálculo do trabalho máximo de um sistema seria dado por:

Wmáx = µiA - µiB = RT ln ai miA / ai miB

onde a é a atividade da substância i e m a sua molalidade (Nobel, 1999). Considerando-se uma das fases como sendo um padrão, onde xi seja

igual a 1, o potencial químico correspondente assume um valor padrão de referência, que será constante. Contudo, o uso de m em vez de x é mais conveniente, porém deve-se estipular um estado padrão diferente, pois x=1 significa uma substância pura, enquanto m=1 significa aproximadamente uma solução molar. Portanto, o potencial químico padrão seria o valor para uma solução molal, salientando-se que este valor de potencial químico se mantém constante somente quando só ocorrem variações de composição do sistema,

41

A RELAÇÃO DA PLANTA COM A ÁGUA

sem mudanças de temperatura e principalmente de pressão. Caso haja variação da pressão, mais um componente (Pi) deve ser incorporado a fórmula do trabalho máximo, que pode ser obtido no sistema, em relação ao seu estado padrão. Portanto, a definição da capacidade máxima de produzir trabalho no sistema, composto por uma solução da substância i, será dada por:

Wmáx = µiA = µi 0 + RT ln ai miA + Pi (eq. 1.25)

Na verdade, deveriam ser incluído o termo “migh”, que é a contribuição gravitacional, e o termo “ziFE”, que é a contribuição elétrica (importante para estudos com eletrólitos), segundo Nobel (1999).

1.8 • A TERMODINÂMICA E A RELAÇÃO DE TECIDOS VEGETAIS COM A ÁGUA

Este é um assunto de grande interesse para a fisiologia vegetal, pois a água na célula, como já foi comentado, é fundamental para as reações bioquímicas e, conseqüentemente, para a atividade metabólica celular. Portanto, o estudo sobre os mecanismos que controlam a entrada e saída da água na célula permite uma melhor compreensão do comportamento celular.

Desde o reconhecimento da importância das forças osmóticas para o movimento de água em tecidos, na primeira metade do século XIX, grandes avanços foram feitos, como a determinação da participação da pressão de turgescência no controle do movimento da água, que é mantida pelas propriedades elásticas da parede celular, avanços feitos no começo deste século (Pfeffer, 1912), assim como as suas implicações, pelo ajuste destas propriedades elásticas e/ou do potencial osmótico, em processos de adaptação ambiental da célula (Dainty, 1976; Bolaños & Edmeades, 1991; Newman, 1995), ou ainda sobre o transporte “passivo” da água pelas membranas celulares, via canais, as aquaporinas (Maurel, 1997). Este transporte é considerado “passivo”, pois o movimento de água é determinado principalmente pelos gradientes hidrostático (∆P) e osmótico (∆π); porém, foi gasta energia metabólica para gerar este gradiente.

Como foi visto anteriormente, o critério para estabelecimento do equilíbrio da água num sistema é a igualdade do potencial químico da água nas diferentes fases do sistema:

µaapoplasto = µaparede celular = µacitoplasma = µavacúolo.

Para que haja movimento de água entre duas fases, µaA - µaB> 0 e, neste caso, o trabalho máximo obtido no sistema seria dado por: Wmáx = µaA - µaB

42

CARLOS PIMENTEL

= RT ln aa maA / aa maB. Porém, esta fórmula foi deduzida para solutos e, no caso da água, não há significado em falar-se da molalidade da água. Por isto, deve-se reformular o trabalho máximo obtido num sistema aquoso. Pode-se fazer isto através do uso do componente osmótico existente entre as fases: πA, na fase A e πB na fase B, sendo que neste caso haverá transferência de ∂na moles de água, envolvendo uma variação de volume (a), e portanto o trabalho realizado na fase A é igual a πA a ∂na, e o trabalho aplicado na fase B é igual a πB a ∂na (Slavik, 1974). Assim, o trabalho máximo obtido no sistema é igual a:

Wmáx = µaA - µaB = - ( πA a ∂na - πB a ∂na) (eq. 1.26)

O sinal negativo foi introduzido pois, quanto maior for a pressão osmótica de uma fase, menor será o potencial químico da água nesta fase e vice-versa, ao contrário do potencial químico do soluto, gerador daquele potencial osmótico, que é proporcional ao potencial osmótico da solução (vide a discussão sobre o uso da molaridade para descrição da composição de um sistema em termos do soluto ou do solvente água). O potencial químico da água num sistema varia em sentido oposto ao do potencial químico do soluto que compõe o sistema. Pode-se dizer que, numa solução de um único soluto, se o sistema estiver em equilíbrio, na∂µa- ni∂µi = 0 (sob T e P constantes). Portanto, na fórmula deduzida no tópico anterior, o termo RT ln aa maA, pode ser substituído por πA a (onde o termo ∂na foi eliminado pois não há variação de número de moles de água no sistema), e os termos zjFE (potencial elétrico, que afeta o potencial químico de partículas carregadas) e mjgh (potencial gravitacional, que afeta o potencial químico devido à força da gravidade principalmente no solo e em árvores) podem ser acrescidos, segundo Nobel (1999), e tem-se que:

Wmáx = µaA = µa 0 - πA a + Pa + zjFE+ mjgh (eq. 1.27)

onde zj é a carga da partícula, F é a constante de Faraday, E é a intensidade do campo elétrico, mj é a massa da partícula, g é a força da gravidade e h é a altura.

Contudo, para a maioria dos vegetais, os dois últimos termos não influenciam o potencial químico da água, e a equação, segundo Kramer & Boyer (1995), pode ser simplificada para:

Wmáx = µaA = µa0 - πA a + Pa (eq. 1.28)

Pode-se perceber por esta equação 1.28 que o potencial químico padrão da água (µa

0) é aquele da água pura (πA = 0) e livre, isto é, quando

43

A RELAÇÃO DA PLANTA COM A ÁGUA

não há pressão sendo aplicada sobre ela e, por isso, tem a maior capacidade de gerar trabalho; em qualquer outro sistema onde haja a água, haverá forças atuando sobre a água (osmótica ou de pressão) e o potencial químico será menor. A água vai sempre se movimentar de uma fase onde esteja mais pura e livre para outra onde haja maior quantidade de solutos (Slavik, 1974).

Passando o termo µa 0 para o outro lado da equação, e dividindo-

se ambos os lados por a, ter-se-á:

(µaA - µa 0) / a = P - πA (eq. 1.29)

que é a formulação do potencial da água (Ψa) em vegetais, que também já foi chamado de potencial de sucção, potencial hídrico ou de déficit de pressão de difusão, onde o termo P corresponde à pressão de turgescência, e o termo π corresponde ao potencial osmótico (Dainty, 1976).

No sistema solo, outro componente do potencial da água deve ser incluído, o potencial matricial (τ), que é devido à adsorção de água nos colóides do solo (a matriz), nas argilas e na matéria orgânica, em uma interface água/ar (no solo abaixo da capacidade de campo), pois no solo o conteúdo de água pode ser baixo e, conseqüentemente, a interface água/ar pode ser importante. A princípio, o componente matricial também existe nos tecidos vegetais, e é originado na parede celular e macromoléculas, mas não tem grande importância, e se considera que está embutido no componente osmótico, pois o conteúdo de água nos tecidos é alto (acima de 75% de peso, na maioria dos vegetais), não existindo esta interface água/ar (somente na câmara subestomática, onde a água se evapora, passando para a atmosfera, na fase gasosa), segundo Kramer & Boyer (1995).

O valor de P é positivo, pois, na célula, por exemplo, é uma força exercida pela parede celular expulsando a água da célula (um bom exemplo de comparação é um balão de borracha, que é cheio de ar quando se sopra dentro dele, mas que expulsa o ar do seu interior, quando se pára de soprar), enquanto o π é negativo, assim como o Ψa, pois é uma força que atrai a água para dentro da célula. Esta formulação torna mais fácil a mensuração da capacidade de gerar trabalho do sistema, pois, em vez de energia, pode-se usar a pressão como unidade de medida, pois energia por volume é pressão. Tendo em vista que o potencial químico da água pura e livre é maior que o da água em outra condição, o valor µa

A - µa 0 será sempre

negativo e, por isto, o sinal do potencial da água (Ψa) é também negativo (Slatyer, 1967).

44

CARLOS PIMENTEL

Outra formulação para o potencial químico da água nos sistemas vegetais, já vista no tópico anterior, seria:

Wmáx = µaA = µa 0 + RT ln aa maA + Pa

que, sendo analisada, em comparação com a fórmula da energia livre de Gibbs (G = H - TS, que é o trabalho máximo do sistema), pode-se depreender que o termo Pa é o componente essencialmente energético (H), e o termo RT ln aa maA é o componente entrópico (TS). Por isto, quando a diferença de potencial químico entre duas fases é causada pelo termo da pressão, o movimento da água terá invariavelmente gasto de energia e, quando for causado por diferença de concentração, o movimento de água resultará da tendência de dispersão das moléculas (Nobel, 1999), que é entrópica, sem que haja necessariamente gasto de energia. Analisando alguns exemplos pode-se perceber o termo principal que gera a diferença de potencial químico: A) no fluxo de água entre dois pontos do xilema, o gradiente de potencial entre os pontos, em função da transpiração, é gerado quase que essencialmente pela pressão, com quase nenhuma contribuição do potencial osmótico. Este é um processo energético e não há variação entrópica do conteúdo do xilema; B) na absorção de água pelo vacúolo, a diferença de potencial entre o interior e o exterior é gerada essencialmente pelo componente osmótico; C) no movimento de água entre células, com diferentes distâncias do xilema, haverá participação dos dois componentes, o potencial de pressão (ou de turgescência) e o osmótico, e o movimento será em parte energético e em parte entrópico. Portanto, a difusão é um processo associado essencialmente à tendência de aumento da entropia (Nobel, 1999).

Uma outra consideração a ser feita é a conexão entre o potencial da água e a pressão de vapor, no ar por exemplo. Supondo que a água na forma de vapor esteja em equilíbrio entre duas fases, isto é, que a pressão parcial de vapor da água seja idêntica nas duas fases (paB = paA), não haverá trabalho. Caso isso não ocorra, o trabalho máximo obtível neste sistema e o conseqüente movimento de água de A para B, por exemplo, será dado, segundo Slavik (1974), por:

Wmáx = µaB - µaA = RT ln paB / paA (eq. 1.30)

Para um sistema de uma única fase, comparando-se ao seu estado padrão, ter-se-á µaA - µa

0 = RT ln paA / pa 0 e, se dividirmos ambos os

membros da equação por a, teremos os valores de potencial da água (em termos de pressão). Por isso, na atmosfera com uma certa umidade relativa, o potencial da água é dado, segundo Slatyer (1967), por:

Ψa,atm = -RT / a ln UR% (eq. 1.31)

45

A RELAÇÃO DA PLANTA COM A ÁGUA

Assim, pode-se medir o potencial da água de uma folha, por exemplo, colocando-a em um ambiente fechado e, após o equilíbrio com a atmosfera do ambiente, medir-se a pressão parcial da água na atmosfera daquele ambiente (este é o princípio usado nas medições do potencial da água no solo e em tecidos vegetais, feitas com o microvoltímetro a ponto de orvalho).

46

CARLOS PIMENTEL

47

A RELAÇÃO DA PLANTA COM A ÁGUA

A Planta e a Água

Capítulo 2

2.1 • FUNÇÕES DA ÁGUA

A água é uma das mais importantes substâncias na face da terra, e é essencial para a existência da vida, que muito provavelmente surgiu nos oceanos e depois migrou para a terra, que é um ambiente mais sujeito a estresses que os oceanos. Os gregos e chineses consideravam a água como um dos elementos básicos da origem do universo. Hoje se sabe que a disponibilidade de água não só limita o crescimento vegetal, como também a ocupação humana e vegetal, na Terra e em outros planetas.

A distribuição dos vegetais na superfície terrestre depende mais da disponibilidade de água que de qualquer outro fator ambiental (Tuner, 1986). Em áreas com grande disponibilidade de água, como nas florestas tropicais úmidas, encontra-se a maior diversidade biológica, e em áreas de baixa precipitação, como o Saara, tem-se a menor proliferação de vida. O conteúdo celular de água é superior a 90% na maioria dos tecidos vegetais de plantas herbáceas, chegando a mais de 95% em folhas de alface, em meristemas e em frutos; contudo, ela pode constituir apenas 5% da massa de certos liquens, esporos e sementes secas, o que lhes permite sobreviver longos períodos em condições de desidratação (anidrobiose) mas, para se tornarem metabolicamente ativos, um aumento do conteúdo de água é essencial para o seu desenvolvimento. A diminuição no conteúdo de água na célula, abaixo de um valor crítico, em geral em torno de 75%, provoca mudanças estruturais e, em última instância, a morte da célula (Teare & Peet, 1983).

Além disso, em meio aquoso ocorre a difusão de minerais, solutos celulares e gases, tanto na célula quanto entre órgãos. A relativa alta permeabilidade da maioria das paredes e membranas celulares resulta numa fase contínua para a difusão e translocação de solutos na planta. A água é também um importante reagente ou substrato para reações celulares imprescindíveis para todo tipo de vida conhecida, como, por exemplo, a fotólise da água, que é o processo inicial da fotossíntese, e que sustenta toda a biosfera. Ela é também a fonte do oxigênio molecular existente na atmosfera, que é produzido na fotossíntese, assim como do hidrogênio para reduzir o CO2 a carboidrato. A vida só passou a ocupar o meio terrestre, mais adverso que o meio aquoso dos mares e lagos, após o enriquecimento da atmosfera em O2, e conseqüentemente, em O3, gerado pela fotólise da água, que absorve as ondas eletromagnéticas abaixo do ultravioleta, protegendo assim a célula contra mutações nocivas. A água, como meio, atua como um filtro para esses comprimentos de onda curtos, que são nocivos ao DNA. Outros processos,

48

CARLOS PIMENTEL

como a hidrólise de macromoléculas, tais como a do amido em açúcares solúveis, são imprescindíveis na germinação de sementes ou na respiração noturna, quando não há produção de carboidratos pela fotossíntese, e a respiração de manutenção e, principalmente, a de crescimento, se mantêm. Outra função da água é a manutenção da turgescência celular, que sustenta a própria morfologia de plantas herbáceas, e que é essencial para o aumento de volume celular e crescimento do vegetal, abertura dos estômatos e movimentos de folhas e flores (Kramer & Boyer, 1995).

2.2 • PROPRIEDADES FÍSICO-QUÍMICAS DA ÁGUA

A importância da água para a biosfera decorre de suas propriedades físico-químicas únicas (Quadro 1), que já eram reconhecidas desde o século XIX, mas até hoje ainda persistem algumas dúvidas a respeito dessas propriedades. A água, com o seu peso molecular, só deveria existir, na temperatura ambiente, na forma de gás, e deveria ter um ponto de congelamento abaixo de -100°C. Contudo, ela existe como líquido na temperatura ambiente e seu ponto de congelamento é de 0°C. Ela possui, depois da amônia, o mais alto calor específico (0,0754 kJ mol-1 °C –1, a 25°C; que é a quantidade de energia requerida para aquecer um grama de água, de 14,5 a 15,5°C); o seu calor de vaporização é de 2,26 MJ kg-1, a 100°C, ou 40,7 kJ mol-1, o que, por unidade de massa, é o maior valor de calor de vaporização de qualquer líquido conhecido; e a sua tensão superficial é de 0,0728 N m-1 a 20°C, que é um valor bastante superior ao de outros líquidos (Nobel, 1999). A água também tem uma alta densidade, que é máxima a 4°C (menor volume da água), e o que é extraordinário é o fato da água expandir- se, assumindo uma estrutura mais organizada, ao congelar a 0°C e, por isso, o gelo tem um volume 9% superior à água líquida, o que explica porque o gelo bóia, como será discutido abaixo.

49

A RELAÇÃO DA PLANTA COM A ÁGUA

Quadro 1 • Propriedades físicas da água

Propriedade Valor e unidade

Calor de fusão 6,0 kJ mol-1 (a 0ºC) Calor de vaporização 40,7 kJ mol-1 (a 100ºC) Calor específico 0,0754 kJ mol-1ºC-1 (a 25ºC) Tensão superficial 0,0728 N m-1 (a 20ºC) Pontes de hidrogênio 20 kJ mol-1 (para cada uma) Ligação covalente (O-H) 464 kJ mol-1 (para cada uma)

No início do século XX, tomou-se ciência de que esta combinação de propriedades inusitadas não poderia existir num sistema composto por moléculas individuais de H2O (Maximov, 1929). Hoje, sabe-se que as moléculas de água estão associadas numa estrutura mais ou menos organizada, dependendo de seu estado, que é mantida através das chamadas “pontes de hidrogênio”. Por exemplo, o gelo é caracterizado por uma estrutura tridimensional cristalina bem organizada, composta provavelmente por oito moléculas de água. Já a água na fase líquida está em maior desordem, e esta desorganização é máxima na fase de vapor. Essas propriedades físico- químicas da água, citadas no parágrafo anterior, são explicadas pela sua distribuição eletrônica, diferindo de outras moléculas que, como a água, também possuem 10 prótons e 10 elétrons, como por exemplo: CH4, NH3, HF e Ne. As grandes forças intermoleculares da água são decorrentes da estrutura da sua molécula. A distância internuclear entre o oxigênio e cada um dos átomos de hidrogênio é de 0,099 nm, e o ângulo entre as ligações dos átomos de hidrogênio é de 105°, e não de 180°, como seria de se esperar. Tendo em vista que o átomo de oxigênio é extremamente negativo, ele tende a atrair os elétrons dos átomos de hidrogênio, ficando com uma carga parcial negativa (∂-), enquanto os dois átomos de hidrogênio, que não estão a 180°, ficam com uma carga parcial positiva (∂+) entre eles. Estas cargas positivas dos átomos de hidrogênio são atraídas eletrostaticamente pelas cargas negativas dos átomos de oxigênio de moléculas vizinhas, formando assim as chamadas “pontes de hidrogênio”. Estas pontes de hidrogênio (ligações mais fracas que as eletrovalentes, como as covalentes) entre as moléculas de água, têm uma energia de 20 kJ mol-1 (enquanto as ligações covalentes, como a O- H, necessitam de 464 kJ mol-1 para serem rompidas), e promovem um aumento da organização molecular em soluções aquosas (Pauling, 1970). As pontes de hidrogênio têm uma meia-vida de 2 x 10-10 segundos, que são dificilmente detectadas e, por isto, ainda existem dúvidas a respeito da estrutura da água líquida e sobre a maneira que as suas moléculas se arranjam no espaço.

O gelo tem uma estrutura cristalina mais organizada que na fase líquida (por isso, o gelo tem um maior volume e menor densidade que a água líquida) e, à medida que energia é absorvida para derreter o gelo, algumas destas ligações são quebradas (13 a 15% delas são quebradas para a fusão do gelo, e 8% das moléculas de água escapam da estrutura cristalina). Quando a temperatura sobe acima de 4°C, aumentam a quebra e as deformações das pontes de hidrogênio, resultando em um aumento do volume. Na forma de gelo, cada molécula de água é ligada a moléculas adjacentes por quatro pontes

50

CARLOS PIMENTEL

de hidrogênio, enquanto no estado líquido, a 25°C, cada molécula de água é ligada, em média, por 3,8 pontes de hidrogênio (Tyree, 1997). A total ruptura dessas pontes de hidrogênio ocorre com a vaporização da água, quando as moléculas de água são todas separadas (aumento da entropia) e, por isto, o calor de vaporização da água é o mais alto encontrado na natureza, pois muita energia é requerida para romper as pontes de hidrogênio. Esta propriedade tem uma importância capital para a vida na Terra, pois a evaporação da água dos oceanos (2/3 da superfície terrestre) absorve calor da atmosfera, impedindo o aumento da temperatura ambiente, acima dos limites suportáveis para a maioria das formas de vida (Nobel, 1999). Além disto, a evaporação da água na planta com a transpiração, na câmara sub- estomática foliar, absorve calor dos tecidos, promovendo o seu resfriamento. A perda de calor através da evaporação da água, pela transpiração, é o mecanismo primário de regulação da temperatura em plantas terrestres, dissipando assim grande parte do calor absorvido da radiação emitida pelo sol (Slatyer, 1967).

Além dessas propriedades únicas, a água é muito pouco ionizada, e somente uma molécula em 55,5 x 107 é dissociada. Ela é um bom solvente para eletrólitos, pois a atração de íons nas cargas parciais, negativa e positiva, da molécula de água mantém os íons de cargas opostas separados, pois estes íons ficam envolvidos por ligações com os dipolos da água, como na dissolução do NaCl em água, por exemplo. A água é também um bom solvente para não-eletrólitos, como as substâncias polares ou assimétricas, pois pode formar pontes de hidrogênio com o nitrogênio dos grupamentos amino, com o oxigênio dos grupamentos carboxílicos e com outros átomos, o que a faz ser adsorvida na superfície de partículas de vidro, argila, celulose, proteínas e outras substâncias. A alta viscosidade e tensão superficial da água são também devidas a essas pontes de hidrogênio.

A atração intermolecular entre moléculas de uma mesma espécie, como a atração entre duas moléculas de água, é chamada de força de coesão, e a atração entre as fases líquida e sólida, como entre a água e a parede interna do xilema ou de um tubo de vidro de pequeno diâmetro, é chamada de força de adesão. Se existissem somente as ligações iônicas e covalentes, não haveria líquidos e sólidos, visto que estas ligações não permitem interações entre as moléculas. As interações entre moléculas se fazem pelas pontes de hidrogênio e pelas chamadas forças de van der Waals ou de London (Kramer & Boyer, 1995). Estas últimas são iguais à atração eletrostática, entre elétrons de uma molécula e o núcleo de uma molécula adjacente, menos as forças de repulsão

51

A RELAÇÃO DA PLANTA COM A ÁGUA

intereletrônica e internuclear, em moléculas muito próximas, como as pontes de hidrogênio, mas com menor intensidade. Assim, na planta, existe uma coluna de água contínua desde a raiz até a parte aérea que, sob alta transpiração e conseqüente tensão no xilema, pode ser rompida por um pequeno espaço no xilema, mas que se agrega quando a transpiração diminui, o que é a teoria de adesão-coesão do transporte de água até a parte aérea, que se mantém por até mais de 100m, como nas sequóias (Tyree, 1997).

2.3 • PROPRIEDADES DE SOLUÇÕES AQUOSAS E OUTRA DEDUÇÃO DO POTENCIAL DA ÁGUA NOS SISTEMAS BIOLÓGICOS

A fisiologia vegetal dificilmente lida com sistemas compostos por água pura, pois, na maioria dos casos estudados, existem solutos dissolvidos na solução aquosa, seja no solo ou na planta e, na atmosfera, existem outros gases, além do vapor d’água. Como foi visto no primeiro capítulo, complementado com a discussão feita acima sobre as interações da água com outras moléculas do sistema, percebe-se que, ao se adicionar solutos à água, diminui a sua (da água) atividade, e conseqüentemente o seu potencial químico e a sua pressão parcial de vapor na solução, pois esta fica diluída pela adição de solutos. Ela fica mais retida pelas interações eletrônicas com estes solutos, dificultando a sua movimentação para fora deste sistema, por exemplo. Quando se fala na atividade de uma substância e, conseqüentemente, na sua concentração, se pensa na atividade de um soluto numa solução porém, pode-se avaliar também a atividade, ou concentração, do solvente, que é diminuída pela adição do soluto. A água está mais concentrada, com máxima atividade, quando está pura e livre do que com a adição de um soluto; nestes dois sistemas, quando postos em contato, a água vai se movimentar de onde está mais concentrada (pura) para onde está diluída pelos solutos, e menos concentrada (Slavik, 1974).

Isto pode ser visto pela lei de Raoult, que estabelece uma proporcionalidade entre a pressão parcial do solvente água numa solução (e), e a fração molal do solvente água (Na), para soluções de solutos não dissociados, mas que pode ser usada para soluções diluídas (Chagas, 1999). E portanto:

e = eo Na = eo (na / na + ns) (eq. 2.1)

onde e é a pressão parcial do solvente água, na solução, e0 é a pressão parcial do solvente água pura, na é o número de moles do solvente água na solução e ns é o número de moles do soluto. Esta equação só é aplicável para soluções molais diluídas, com um mol ou menos por 1000g de água. Esta equação

52

CARLOS PIMENTEL

apresenta mais uma justificativa de que o valor da pressão parcial da água em soluções e, conseqüentemente, o seu potencial químico sejam menores que o da água pura e livre, pois a adição de solutos diminui a fração molal da água na solução (Na), visto que o número de moles do soluto (ns) é um valor do denominador da equação (Pauling, 1970).

A equação de Raoult mostra que a adição de solutos à solução aquosa diminui o potencial químico da água proporcionalmente à quantidade de moles do soluto adicionados. Assim, a água vai sempre se mover de um sistema onde esteja mais concentrada, com menos solutos, para um sistema onde ela esteja menos concentrada, ou seja, com mais solutos. A adição de solutos num sistema vai atrair a água do meio, onde ela esteja mais concentrada. Por isto, pondo-se água pura em um cilindro, conectado a um outro cilindro de mesmo diâmetro e volume, com uma solução aquosa, e sendo estes cilindros separados por uma membrana permeável à água mas impermeável ao soluto, a água pura irá passar para a solução, devido ao gradiente de fração molal da água, que é menor na solução. Se uma pressão for aplicada ao cilindro com a solução, para conter o aumento do volume deste cilindro, devido à entrada da água, esta pressão será igual à pressão osmótica da solução (Π) que, por sua vez, é igual, em módulo, ao potencial da água na solução (-Ψa,sol), que é composto somente por seu potencial osmótico (-Ψπ). Este é o princípio do osmômetro. Deve-se ressaltar que existe muita controvérsia no uso dos termos “pressão osmótica” e “potencial osmótico”. A pressão osmótica é aquela pressão gerada no osmômetro, quando em contato com a água pura e, portanto, uma solução isolada não tem pressão osmótica, e ela só apresentará esta pressão quando colocada no osmômetro. Já o potencial osmótico é o valor negativo desta mesma quantidade, que é um componente do potencial da água, e também é negativo, segundo Nobel (1999). Portanto, a pressão osmótica será referida como Π e o potencial osmótico como -Ψπ (Ψπ = -Π).

Van’t Hoff desenvolveu uma equação, relacionando a pressão osmótica à concentração do soluto (Pauling, 1970), que é expressa por:

Π V = nsRT (eq. 2.2) ou, como visto no final do Capítulo 1, expressando esta equação, em termos da atividade da água (aa):

Π a = RT ln aa (eq. 2.3) onde Π é a pressão osmótica, em megapascal (MPa), V é o volume do solvente, em metros cúbicos, ns é o número de moles do soluto, R é a constante de gases (8,32 x 10-6 MPa m3 mol-1 K-1), K é a temperatura, em

53

A RELAÇÃO DA PLANTA COM A ÁGUA

graus Kelvin e, na segunda forma da equação, a é o volume parcial molal da água e aa é a atividade da água.

Esta segunda expressão da equação de Van’t Hoff pode ser usada para o cálculo da pressão osmótica (Π) e, com sinal negativo, do potencial osmótico (Ψπ) de qualquer solução (Kramer & Boyer, 1995). A atividade da água (aa) é igual a γa Na, onde γa é o coeficiente de atividade da água e Na é a sua fração molal. A fração molal da água em uma solução (eq. 2.1), com vários solutos dissolvidos, pode ser expressa por:

Na = na / (na + Σ nj) = (na + Σ nj - S nj) / (na + Σ nj) =

= 1 - [Σ nj / (na + Σ nj)] (eq. 2.4)

onde Σ nj é o somatório do número de moles de cada um dos solutos existentes na solução.

Para uma solução ideal, γa é igual a um e, em uma solução diluída, esta também pode ser considerada como sendo igual à unidade, pois na é muito maior que o Σ nj. Usando a eq. 2.3, assumindo que a solução diluída é ideal, obtém-se a seguinte relação para ln aa:

ln aa = ln Na = ln 1 - [Σ nj / (na + Σ nj)] (eq. 2.5)

que pode ser aproximada como:

ln aa ≅ Σ nj / (na + Σ nj) ≅ -Σ nj / na (eq. 2.6)

pois o ln (1-x) = -x - x2 / 2 - x3 / 3 -… é uma série que converge para |x| muito menor que 1 e, portanto, o ln [1 - Σ nj / (na + Σ nj)] pode ser considerado como sendo quase igual a -Σ nj / (na + Σ nj). Sendo o na muito maior que Σ nj (solução muito diluída), pode-se dizer que -Σ nj / (na + Σ nj) é aproximadamente igual a -Σ nj / na (Nobel, 1999). Nesse caso, o cálculo correto da pressão osmótica de uma solução pode ser feito usando a eq. 2.3, como sendo:

Π = RT / a ln 1 - [Σ nj / (na + Σ nj)] (eq. 2.7)

que, por sua vez, pode ser calculado com um valor aproximado, segundo Nobel (1999):

∏ ≅ RT / a (- Σ nj / na) ≅ RT (Σ nj / ana) ≅ RT Σ Cj (eq. 2.8)

sendo este último uma expressão da concentração molal dos solutos j (Cj), em moles de j por quilo de água. Portanto, pode-se calcular o Ψπ de uma solução (que é igual a - ∏), através da equação 2.7 ou, mais simplesmente, com uma boa aproximação para as soluções diluídas, através da equação 2.8, que é conhecida como relação de Van’t Hoff (Kramer & Boyer, 1995; Nobel, 1999).

54

CARLOS PIMENTEL

2.4 • POTENCIAL DA ÁGUA NO SOLO, NA PLANTA E NA ATMOSFERA

Como foi discutida no Capítulo 1, a expressão do potencial químico da água em unidades de energia, como joules mol-1, é de difícil mensuração, e é inconveniente para as discussões das relações da água em tecidos vegetais, sendo que seria mais conveniente o uso de unidades de pressão. Assim, dividindo-se os dois lados da equação 1.30 pelo volume parcial molar da água (a, em m3 mol-1) ter-se-á energia, em joules por m-3, que é equivalente à pressão, em newtons m m-3 (J = N m) ou newtons m-2, que, por sua vez, é igual a megapascal (Tyree, 1997), e que é a unidade usada no sistema internacional (SI). O termo resultante é chamado de potencial da água, que é proporcional ao potencial químico da água:

(µaA - µa 0) / a = RT / a ln paA / pa0 = Ψa (eq. 2.8)

O potencial da água em qualquer sistema é afetado pelos fatores que reduzem ou aumentam a pressão parcial de vapor da água do sistema. Os fatores que reduzem a pressão parcial da água num sistema vegetal, segundo Kramer & Boyer (1995), são:

1) A adição de solutos, que diluem a água e diminuem a sua atividade por hidratação dos solutos ou íons. Este é o chamado componente osmótico (-Ψπ) do potencial da água.

2) A adição de sólidos porosos ou com cargas eletrostáticas que interagem com a água, por tensão superficial e microcapilaridade, como é o caso das partículas de argila, com cargas negativas na superfície, e da parede celular (a pectina da lamela média) ou de macromoléculas como proteínas, onde ocorrem pontes de hidrogênio com o -O-, OH- e COO-. Todas essas forças são chamadas de forças matriciais (pelo tamanho das partículas em relação à água), e são incluídas no componente matricial (-ΨM) do potencial da água. O componente matricial do potencial de água assume maior importância no sistema solo que no sistema vegetal, pois no primeiro existem os meios sólido, líquido e gasoso (representado pelo volume de ar no solo), enquanto no tecido vegetal tem-se os meios sólido e líquido, mas o meio gasoso é insignificante. O componente matricial tem importância para dificultar a vaporização da água, do meio líquido para o ar, no solo.

A temperatura (no estado gasoso da água na atmosfera, principalmente, vide Tabela 1) e a força da gravidade (em árvores de grande porte, por exemplo) são forças que também diminuem a pressão parcial da

55

A RELAÇÃO DA PLANTA COM A ÁGUA

água do sistema, conforme as equações 1.25 e 1.27, porém não são normalmente incluídas como um componente do potencial da água.

Os fatores que aumentam a pressão parcial da água num sistema são: 1) A diluição ou remoção de solutos do sistema, tornando menos

negativo o potencial osmótico (diminuindo a pressão osmótica). 2) A aplicação de uma pressão acima da pressão atmosférica

ambiente, como a pressão exercida pela parede celular, que é elástica, sobre o conteúdo aquoso da célula (como num balão de gás cheio, que expulsa o ar do seu interior, quando perfurado, por exemplo), afetando o turgor celular. Este é o chamado componente de pressão ou de turgescência (+ΨT) do potencial da água.

Portanto, o potencial da água num sistema é dado por: -Ψa = -Ψπ - ΨM + ΨT ou P (eq. 2.9)

No solo, o componente de turgescência não existe (alguns autores incluem o componente gravitacional), e portanto o potencial da água é dado por:

-Ψa(no solo) = -Ψπ - ΨM (eq. 2.10)

Já na planta, o componente matricial não é importante. Apesar de existir, este não interfere significativamente no movimento da água nos tecidos

56

CARLOS PIMENTEL

Tabela 1 • Valores do potencial da água na atmosfera (Ψa, atm), em MPa, e do déficit de pressão de vapor de água na atmosfera (DPV), em kPa, em relação à umidade relativa do ar (UR%), nas temperaturas do ar de 20 e 30ºC

UR Ψa,atm* DPV Ψa,atm* DPV % 20ºC 30ºC

100,0 0,0 0,000 0,0 0,000 99,0 -1,3 0,023 -1,4 0,042 95,0 -6,9 0,117 -7,2 0,212 85,0 -21,9 0,351 -22,7 0,637 75,0 -38,8 0,585 -40,2 1,061 50,0 -93,5 1,169 -96,8 2,123 30,0 -162,5 1,637 -168,1 2,972 20,0 -217,3 1,871 -224,7 3,396 5,0 -404,4 2,222 -418,2 4,034 0,5 -715,3 2,327 -739,6 4,225

*Os valores do Ψa,atm foram calculados segundo a fórmula: Ψa,atm = -RT / a ln UR% (Kramer & Boyer, 1995).

(Slatyer, 1967; Dainty, 1976). Por isto, o potencial da água em tecidos vegetais é controlado por:

-Ψa(na planta) = - Ψπ + ΨP (eq. 2.11)

O último sistema a ser estudado nas relações da água com os vegetais, mas que exerce grande influência no movimento da água no continuum solo- planta-atmosfera é a atmosfera, onde o potencial da água é dado pela pressão parcial da água em relação aos outros gases da atmosfera. Nesse sistema, deve- se ressaltar que a pressão de vapor da água máxima, que pode ocorrer na atmosfera, é dependente da temperatura, na chamada curva do ponto de orvalho (Nobel, 1999). Com o abaixamento da temperatura, diminui esse valor máximo e, assim, parte da água que estava no estado gasoso (se a atmosfera tiver alta umidade relativa) pode passar ao estado líquido, como na formação do orvalho com as baixas temperaturas noturnas. Com o aumento da temperatura, durante o dia, aumenta o valor da pressão de vapor máxima do ar e, conseqüentemente, aumenta a vaporização da água líquida até o limite dado pelo valor da pressão de vapor máxima, equivalente a 100% da umidade relativa para aquela temperatura. Assim, o potencial da água na atmosfera pode ser calculado em função da umidade relativa do ar, a uma dada temperatura, como mostrado na equação 1.31 (Ψa(na atmosfera) = -RT / a ln UR%) (Slatyer, 1967; Milburn, 1979). Deve-se ressaltar que a umidade relativa do ar é dada em porcentagem da máxima pressão parcial de vapor de água, naquela temperatura. A diferença entre a pressão parcial atual da água e a pressão parcial máxima da água (100%), o chamado déficit de pressão de vapor de água (DPV), que diminui o potencial de água na atmosfera, é proporcional à temperatura ambiente. Quanto mais alta for a temperatura do ar, maior a quantidade de água, no estado de vapor, que a atmosfera pode manter. Por isso, o DPV, para o mesmo valor de UR%, a 20°C, é menor que a 30°C, por exemplo (Tabela 1).

2.5 • A CÉLULA EM RELAÇÃO À ÁGUA

A célula é a estrutura básica de todos os organismos, porém a organização dos vegetais pode variar desde simples estruturas unicelulares a complexas estruturas multicelulares, com inúmeros órgãos e atividades fisiológicas bastante distintas. Com a maior complexidade dos organismos, o sistema de absorção de água também se torna mais sofisticado, pois a água se movimenta por maiores distâncias, deve ser estocada em compartimentos específicos, e o vegetal deve controlar a sua absorção e perdas para o meio

57

A RELAÇÃO DA PLANTA COM A ÁGUA

onde está se desenvolvendo. Contudo, a célula, mesmo nos organismos mais complexos, continua sendo a unidade central que controla as respostas do vegetal à disponibilidade de água no solo e na atmosfera, e a variação das características físico-químicas dela resulta em aclimatação do vegetal ao meio ambiente. Este controle das características físico-químicas da célula e do vegetal, e sua conseqüente aclimatação (fenotípica) ou adaptação (genotípica) são maiores ou menores segundo a espécie e variam também entre genótipos de uma mesma espécie (Kramer & Boyer, 1995).

A célula vegetal é constituída do citoplasma, com múltiplas organelas (vacúolos, cloroplastos, mitocôndrias etc.), que é envolvido por uma membrana, a plasmalema, e pela parede celular. O conjunto formado por citoplasma e plasmalema é chamado de protoplasma. A parede celular é composta por lamela média, parede primária e parede secundária. A lamela média é constituída de pectina, que é formada por vários compostos, sendo os mais importantes são os ácidos poligalacturônicos que, por possuírem cargas negativas, responsáveis pela capacidade de troca catiônica (CTC) do apoplasto (que é o espaço exterior à plasmalema, dentro do tecido vegetal), que nas raízes é chamado espaço livre de Donnan. A parede primária já se desenvolve em células jovens, e é composta por uma estrutura porosa, constituída de microfibrilas de celulose (em torno de 10 nm de diâmetro) com baixo grau de polimerização, e de hemicelulose (xilanos em monocotiledôneas e xiloglucanos em dicotiledôneas), que são embebidas numa matriz de oligossacarídeos e algumas proteínas estruturais, principalmente glicoproteínas, o que demonstra que existe atividade metabólica na lamela média e na parede primária. As microfibrilas provêem a força tênsil da parede e a matriz mantém as microfibrilas interligadas numa forma organizada. A orientação das microfibrilas controla o crescimento celular para determinadas direções e, quando a célula pára de crescer, camadas adicionais de parede celular (parede secundária) são depositadas entre a plasmalema e a parede primária. Esta parede secundária contém celulose com alto grau de polimerização, com menos hemicelulose e proteínas que a primária, além de ligninas, principalmente em monocotiledôneas, suberinas, mais em dicotiledôneas (Zeier et al., 1999), e outros compostos, que dão as características especiais de rigidez e impermeabilidade próprias às árvores, cascas de castanhas e outros tecidos vegetais (Sattelmacher, 2001). Devido a estas diferenças na composição da parede celular de mono e dicotiledôneas, estas últimas têm maior concentração de pectinas, compostas por ácidos poligalacturônicos, com

58

CARLOS PIMENTEL

cargas negativas que retêm cátions e, por isso, têm a capacidade de troca catiônica (CTC) duas a três vezes maior que as monocotiledôneas. Nas dicotiledôneas, há uma maior dificuldade de penetração de cátions, sendo elas também mais sensíveis à toxidez de Al+3, e uma maior exclusão de ânions, como o H2PO4

-, que é limitante na maioria dos solos tropicais (Marschner, 1995). Isso mostra que o movimento de íons no apoplasto é caracterizado por interações eletrostáticas com a parede celular e no chamado Espaço Livre Aparente (ELA), que corresponde a mais ou menos 5% do volume da raiz. O ELA é dividido em Espaço Livre de Donnan (ELD), onde a água e os íons interagem com as cargas da parede, e o Espaço de Água Livre (EAL), onde o movimento de água e de íons não é influenciado pelas cargas negativas da parede. A relação entre o ELD e o EAL é de 20% para 80%, e o ELD é responsável pela CTC da raiz, que não é constante, variando com o ambiente, e é regulada por enzimas como a pectina metilesterase (PME). As pectinas da parede celular têm uma grande influência na condutividade hidráulica da raiz e, em conjunto com a extensina, afetam a elasticidade da parede (Sattelmacher, 2001), que vai controlar a expansão celular (Neumann, 1995), como será visto adiante, com a equação de Lockhart para o crescimento.

Na parede celular existem dois tipos de poros: uns mais largos, os plasmodesmos, preenchidos por protoplasma, que conectam as células adjacentes, permitindo o transporte de solutos e água; e outros menores (0,3 a 6,5nm) e mais numerosos. Estes últimos podem ter controle de sua abertura para contato com o exterior celular, permitindo a passagem de água e pequenos solutos, como açúcares, aminoácidos, lipídeos e pequenas proteínas, e são chamados de canais e bombas iônicas (Stryer, 1995). Os plasmodesmos são usados no transporte, de célula a célula, simplástico de água em tecidos vegetais e os canais iônicos, principalmente as aquaporinas (vide abaixo), são usados no transporte, de célula a célula, de água em plantas (Steudle & Peterson, 1998), como será discutido no próximo capítulo.

Já a membrana celular, formada por uma dupla camada de fosfolipídeos e algumas proteínas intrínsecas e extrínsecas (canais iônicos, ATPases, receptores membranares etc.), permite uma certa difusão da água, mas não para os solutos, que são transportados através dos canais e bombas iônicas específicos, localizados na membrana celular. Estes canais e bombas podem ter um gasto de energia direto no processo de transporte, como nas bombas de prótons, ou indireto, na geração do gradiente eletroquímico

59

A RELAÇÃO DA PLANTA COM A ÁGUA

necessário ao transporte e à abertura dos canais iônicos, por exemplo (Stryer, 1995). Já a difusão facilitada da água se dá através de canais específicos, chamados de aquaporinas [mas há gasto de energia nesse transporte (Javot & Maurel, 2002)], que são proteínas intrínsecas às membranas (PIM), com 0,3 a 0,4nm (Maurel, 1997). Estes canais podem regular o transporte de água, de célula a célula (também chamado de transporte transcelular), segundo Steudle (2000), durante o crescimento e desenvolvimento vegetal. Eles interferem também na resposta aos estresses ambientais, tais como encharcamento (falta de O2), déficit hídrico, salinidade e baixas ou altas temperaturas, regulando a condutividade hidráulica da raiz (Lpr) (que, portanto, é variável, ao contrário do que se pensava antigamente) e o fluxo de água nestas condições de estresse (Steudle, 2001). O mecanismo de transdução de sinais, entre o estímulo externo (um estresse por exemplo) e a atividade dessas proteínas, parece ser controlado pela sua fosforilação, através de cinases, que aumenta a sua atividade, ou pela sua desfosforilação, que a diminui. Esses canais de água facilitam o fluxo de água através das membranas, pois o fluxo de água é determinado primariamente pelos gradientes hidrostático (∆ΨT) e osmótico (∆Ψπ), mas para a geração do gradiente, energia foi gasta. O efeito da atividade metabólica sobre o transporte de água é indireto portanto, pois a redução da respiração radicular, por exemplo, vai diminuir a produção de energia necessária para gerar o gradiente de Ψa e o conseqüente fluxo de água (Javot & Maurel, 2002). As variações de permeabilidade da água encontradas principalmente na zona suberizada das raízes refletem, em grande parte, as propriedades de suas membranas e, conseqüentemente, de suas aquaporinas (Steudle, 1994).

Porém, as aquaporinas não são as únicas proteínas responsáveis pelo transporte de água transcelular, pois, na maioria dos canais iônicos, o transporte de um íon está acoplado ao transporte de 5 a 10 moléculas de água. Em Chara, por exemplo, o transporte de um mol de K+, através de seu canal iônico, está acoplado ao transporte de 25 moles de água. Além dos canais iônicos, a água também pode atravessar as membranas celulares através da bicamada de fosfolipídeos. Contudo, as aquaporinas parecem mediar as rápidas e grandes variações no transporte de água transcelular (Maurel, 1997). Esse transporte de água, via aquaporinas, é importante na via transcelular do transporte axial de água na raiz, por exemplo; porém, as aquaporinas parecem não ser tão seletivas para a água, como a princípio se pensava, e álcoois, cetonas, amidas e outras pequenas moléculas também

60

CARLOS PIMENTEL

podem ser transportadas por esses canais. O fechamento das aquaporinas pode causar uma redução de 75% do fluxo hidráulico em Chara, e resultados semelhantes já foram obtidos em raízes de milho. Por isto, a absorção de água pelas partes mais velhas das raízes e em raízes suberizadas é controlada em grande parte pelas aquaporinas, e a atividade desses canais de água é afetada por salinidade, concentração de solutos na solução do solo, temperatura e metais pesados (Steudle, 2001). Porém, mais estudos são necessários para se determinar a função e o efeito destes canais no transporte transcelular da água (Steudle & Peterson, 1998; Steudle, 2000). Esses resultados recentes ajudam a explicar, por exemplo, o efeito da irrigação em um solo seco, nas horas mais quentes do dia, que diminui a absorção de água pelas plantas, causando um certo murchamento. Sendo a absorção de água ativa, em parte, o resfriamento do solo, causado pela evaporação da água de irrigação, diminui a respiração radicular e geração de energia para a absorção ativa da água pelas aquaporinas.

Por outro lado, no protoplasma (citoplasma e plasmalema incluídos) da célula, a concentração de solutos é tipicamente de 0,5 a 1 molal superior à concentração destes no exterior, causando uma grande tendência à entrada de água na célula. Por isso, o aumento de volume, causado pela entrada de água, tem de ser refreado pela resistência da parede celular (como num balão de gás que é inflado e a borracha do balão tende a expulsar o gás no interior), criando a pressão de turgescência, que pode aumentar até se igualar à pressão osmótica. Portanto, em células túrgidas, o componente de pressão da água na célula é variável, mas o componente osmótico, em células não estressadas, não é, mesmo nas organelas celulares; pois, se houver variação na concentração de solutos nestas organelas, a água do citosol imediatamente entra na organela reestabelecendo o equilíbrio de Ψa em todo o protoplasma. Um bom exemplo desse equilíbrio é o que ocorre no vacúolo central de células maduras, que é a organela dominante do seu protoplasma. Em células jovens, esta organela tem um volume negligenciável, e a maior parte do compartimento celular é composta pelo citoplasma. Com o seu desenvolvimento, o vacúolo também aumenta de volume, ocupando grande parte do protoplasma, acumulando sais e alguns metabólitos de reserva. O aumento da pressão osmótica no seu interior causa a entrada de água no vacúolo, estabelecendo um equilíbrio constante entre este e o citoplasma, pois a condutividade hidráulica do tonoplasto (membrana vacuolar) é alta (Steudle & Peterson, 1998). Este balanço osmótico também ocorre entre as células vizinhas de um tecido, pois a água, os solutos e algumas macromoléculas passam de uma célula para outra,

61

A RELAÇÃO DA PLANTA COM A ÁGUA

através do plasmodesma, havendo uma unidade do chamado simplasto, que é o espaço intracelular, nos tecidos vegetais adjacentes. Já espaço extracelular à plasmalema, nas paredes celulares e entre estas, é chamado de apoplasto (Teare & Peet, 1983), como foi dito anteriormente, e será discutido no próximo capítulo, para o transporte de água na raiz.

Contudo, sob desidratação ou salinização, o balanço osmótico celular é dificilmente mantido, devido à perda de água para o meio externo pela transpiração, sem reposição pela absorção radicular e, assim, a concentração de solutos celulares aumenta passivamente, devido à diminuição do conteúdo de água celular (Morgan, 1984). Este processo deve ser ressaltado para diferenciá-lo do processo de ajustamento osmótico, que será discutido nos próximos capítulos, em que há gasto de energia para a acumulação de solutos (Passioura, 1986).

Outrossim, com a diminuição do conteúdo de água celular, devido ao estresse, a estrutura celular é alterada e a plasmalema e o tonoplasto sofrem a ação de enzimas hidrolíticas, tais como lipases, proteases, peroxidases e outras (Vieira da Silva, 1976). As ações dessas enzimas, ativadas sob desidratação, causam alteração da composição membranar, da sua seletividade para os solutos e da sua fluidez, permitindo a extrusão de solutos (Pimentel et al., 2000). Com o estado avançado de desidratação, estas membranas podem se romper, ocorrendo a descompartimentalização celular. Este efeito sobre as membranas celulares é variável segundo as espécies e mesmo dentro de uma espécie, sugerindo que a tolerância celular à desidratação pode ser determinada, em parte, pelas propriedades físico-químicas das suas membranas, principalmente do grau de saturação de seus fosfolipídeos, que vai diminuir a vazão de íons e o seu rompimento (Vieira da Silva, 1976).

Para que haja expansão celular, o componente de pressão do potencial da água na célula, o ΨT, gera a turgescência celular para promover o crescimento, considerado como sendo o aumento irreversível no volume celular, mas não é o único fator de controle do crescimento. O crescimento é dependente da turgescência celular, mas também depende do coeficiente de extensibilidade de parede, que é controlado pela célula e, portanto, o crescimento é determinado pela equação de Lockhart:

C = m (P - Y) (eq. 2.12)

onde m é o coeficiente de extensibilidade de parede celular, que é controlado pela célula (Neumann, 1995), P é o potencial de turgescência atual da célula, e Y é o potencial de turgescência mínimo requerido para iniciar a expansão irreversível da parede celular (Poljakoff-Mayber & Lerner, 1994). Isto é, se a

62

CARLOS PIMENTEL

parede celular enrijecer, não adianta ter uma alta pressão de turgescência, pois não poderá haver aumento irreversível de volume e conseqüente crescimento. Por isso, a avaliação do ajustamento osmótico (acumulando ativamente mais solutos no interior da célula e, por consequência, abaixando o seu Ψπ, à medida que a disponibilidade de água e o Ψa diminuem), como indicador de tolerância à seca para o melhoramento vegetal, não se correlaciona com a produtividade do milho, sob deficiência hídrica (Bolaños & Edmeades, 1995). Provavelmente isto ocorre porque o principal mecanismo de adaptação está ao nível da composição de parede e do seu ajuste de extensibilidade. Os genótipos que podem reduzir a extensibilidade da parede terão um Ψπ superior, menos negativo, mas conseguem continuar a absorver água, pois mantêm o volume celular e, com isso, precisam acumular menos solutos para promover a entrada de água na célula (Pimentel, 1999).

63

A RELAÇÃO DA PLANTA COM A ÁGUA

64

CARLOS PIMENTEL

A Água no Sistema Solo-Planta-Atmosfera (SSPA)

Capítulo 3

3.1 • INTRODUÇÃO

Apesar da importância da água para o metabolismo vegetal, assim como para a sua constituição, a quantidade de água existente na planta é pequena, quando comparada com a quantidade de água que passa pela planta através da transpiração. Porém, a transpiração tem efeitos importantes na agricultura tropical, como o resfriamento da folha, pois, para evaporar-se na folha, a água absorve energia térmica desta (devido ao seu alto calor de vaporização - vide Capítulo 2), reduzindo a temperatura foliar em 2 a 3°C (Milburn, 1979). Além do resfriamento da folha, a transpiração tem também importância para a aquisição e transporte dos nutrientes do solo para os diferentes tecidos do vegetal. Ainda segundo Milburn (1979), o fluxo transpiratório auxilia o transporte e absorção de nutrientes quando estes são abundantes, mas o principal efeito da transpiração é o resfriamento de folhas, que pode cessar com o fechamento estomático, pois estas são mais capazes de conviver com altas temperaturas que com a falta d’água.

Em termos químicos, a água é importante na reação fotossintética, por exemplo, pois seis moléculas de CO2 reagem com uma molécula de H2O para formar uma molécula de glicose. Mas deve-se ressaltar que, com a desidratação dos tecidos de vegetais superiores, em geral, a morte da planta ocorre quando o conteúdo de água se situa em torno de 75% e, portanto, ainda existe uma grande quantidade de água para a reação fotossintética (Kramer & Boyer, 1995). A diminuição do conteúdo em água nos tecidos vai afetar a fotossíntese de outra forma. Em um primeiro estágio, a falta de um suprimento adequado de água causa o fechamento estomático, que pode ocorrer mesmo em plantas irrigadas, nas horas mais quentes do dia (Schulze, 1986; Tardieu & Simonneau, 1998), quando o DPV do ar é alto (vide Capítulo 2) e a absorção de água pelas raízes não supre a demanda atmosférica, diminuindo assim a disponibilidade de CO2 no mesófilo. Com o déficit mais severo, a deficiência hídrica causa diminuição da atividade das enzimas envolvidas nas reações fotossintéticas (Lauer & Boyer, 1992; Kramer & Boyer, 1995) e altera a integridade membranar (Vieira da Silva, 1976) e, conseqüentemente, os processos dependentes, como a atividade dos fotossistemas (Pimentel et al., 1999a). Segundo Teare & Peet (1983), a quantidade de água utilizada para a produção de 1kg de trigo é de aproximadamente 1000kg, para 1kg de arroz ou de frutas secas é de 2500kg, e para a produção de 1kg de fibra de algodão é de 5000kg. Neste quilo produzido, somente 0,15kg é composto de água, e o restante passou pela planta para a atmosfera, através da transpiração.

65

A RELAÇÃO DA PLANTA COM A ÁGUA

Quando há disponibilidade de água no solo, esta se movimenta, por difusão, do solo para a planta e da planta para a atmosfera, no sistema contínuo solo-planta-atmosfera, o “SSPA” (Angelocci, 2002). A água está no estado líquido no solo e na planta, até a superfície das paredes celulares da folha, na câmara subestomática, ou na epiderme, onde ela se vaporiza, passando para a atmosfera no estado gasoso (Sutcliffe, 1971). Este movimento de difusão da água ocorre devido ao gradiente de Ψa, que existe entre o solo (a princípio, com o maior Ψa do SSPA), a planta (com menor Ψa que o do solo) e a atmosfera (em geral, com menor Ψa que o da planta e solo), o que provoca o transporte da água do solo para a planta, à medida que esta perde água para a atmosfera, pela transpiração (Winter, 1976). O movimento de água nesse sistema pode ser comparado ao da corrente elétrica num circuito elétrico com resistências em série ou paralelas, num processo catenário, onde cada catenário funciona como um circuito elétrico e, de acordo com as leis básicas da eletricidade, os componentes em série (na raiz e no caule, por exemplo) reduzem a condutância do sistema (Figura 1) e, quando em paralelo (nas diferentes folhas, por exemplo [Tyree, 1997]), as suas condutâncias são aditivas (Steudle & Peterson, 1998).

66

CARLOS PIMENTEL

Figura 1 • Catenário e valores de Ψa e controle da Lp (condutância hidráulica no sistema solo-água-planta

Ψa na atmosfera: -96,8 MPa (UR: 50%,T: 30ºC)

Ψa nas folhas: -2 MPa

Ψa no xilema: -0,5 MPa

Ψa na raiz: -0,1 MPa

Ψa no solo: -0,1 MPa

Ψa,atm - Ψa,solo

Lp folhas

Lp raiz

Lp xilema

Atmosfera

Solo

Lembrando que a condutância (g ou Lp) é o inverso da resistência (R), g = 1 / R. Para a análise de fluxos na planta, e dela com o meio, atualmente, se usa unidades de condutância da água (Tsuda & Tyree, 2000), nas diferentes partes do SSPA, em vez das unidades tradicionais de resistência (Slatyer, 1967; Sutcliffe, 1971; Winter, 1976). Isto porque, freqüentemente, depara-se com valores de condutância nula, como quando os estômatos estão fechados, e se os fluxos de H2O e de CO2 na planta fossem analisados em função da resistência à passagem destes, como se fazia até a década de 80, ter-se-ia freqüentemente valores próximos de infinito (1/0 = ∞), o que dificulta os cálculos e a expressão dos resultados. Outrossim, a ascensão de água na planta ainda é explicada pela teoria da coesão-adesão da água, apesar das críticas feitas recentemente (Zimmerman et al., 1994), mas que não foram comprovadas (Tyree, 1997; Steudle, 2001).

Deve ser ressaltado que, anteriormente, achava-se que, no SSPA, o único ponto de controle do transporte de água era pela modulação da condutância estomática (gs), e que a Lp da raiz e do xilema eram constantes. Porém, hoje se sabe que tanto a Lp da raiz como do xilema podem ser moduladas pela planta (Figura 1), como será discutido a seguir, dependendo do DPV do ar e da disponibilidade de água no solo (Steudle, 1994, 2000, 2001; Hartung et al., 2002)

3.2 • O TRANSPORTE DA ÁGUA NO SSPA

A difusão é um processo espontâneo de movimento de uma substância, no estado líquido ou gasoso, de um local para outro adjacente, onde a atividade da substância em questão é menor (Nobel, 1999). Em 1855, Adolph Fick foi o primeiro pesquisador a examinar quantitativamente o processo de difusão, com base na diferença de concentração da substância, que resultou na equação da densidade de fluxo, em função da força motriz, que no caso é o gradiente de concentração (o termo RT ln ai, da equação 1.23, para determinar-se o µi) entre os dois locais, a chamada 1

a lei de Fick (Kramer & Boyer, 1995):

Ji = -Di δci / δx (eq. 3.1)

onde Ji é a densidade do fluxo da substância i, ci é a concentração da substância i, x é a direção do fluxo e Di é o coeficiente de difusão da espécie i.

67

A RELAÇÃO DA PLANTA COM A ÁGUA

Em 1856, Henri Darcy reconheceu que o fluxo de água no solo era função do gradiente de pressão hidrostática (neste caso, o termo Pa, da equação 1.27, para determinar-se o µa), cuja equação ficou conhecida, segundo Nobel (1999), como lei de Darcy:

Jv = -Lpsolo ∂Psolo / ∂x (eq. 3.2)

onde Jv é o volume da solução que atravessa a unidade de área estudada por unidade de tempo, Lpsolo é o coeficiente de condutividade hidráulica do solo e Psolo é a pressão hidrostática do solo.

Para descrever quantitativamente o movimento de fluidos no xilema, Gotthilf Hagen, em 1839 e, independentemente, Jan Poiseuille, em 1850, determinaram uma equação para tubos cilíndricos, também em função do gradiente de pressão hidrostática (neste caso, também é o termo Pa, da equação 1.27, para determinar-se o µa), conhecida como lei de Poiseuille, segundo Nobel (1999), cuja equação é:

Jv = -r 2 / 8η ∂Psolo / ∂x (eq. 3.3)

onde Jv é o volume da solução que passa pelo cilindro por unidade de tempo, r é o raio do cilindro e η é a viscosidade da solução. Esta equação prevê que o fluxo de água, nos poros do solo, se daria como em cilindros alinhados na direção do fluxo e, no xilema, o fluxo de água se daria em lâminas ou camadas, sem turbulência. Atualmente se sabe não ser esta a realidade para o fluxo de água tanto no solo como no xilema, e, portanto, esta equação 3.3 não é mais muito usada, pois os valores de densidade de fluxo obtidos pela equação são muito diferentes dos reais valores, medidos com os equipamentos modernos, que não existiam antigamente (Nobel, 1999). Outrossim, hoje sabe-se que a Lp da raiz e do xilema são variáveis (Steudle, 1994; 2000), e não estáticas como se pensava, em função do Ψa do solo e da atmosfera, da via de absorção de água na raiz, da atividade das aquaporinas, da tensão de água no xilema e da sua composição, entre outros fatores (Rieger & Litvin, 1999; Barrowclough et al., 2000; Zwieniecki et al., 2001; Javot & Maurel, 2002).

Na célula, para a maioria dos vegetais, o transporte de solutos, de fora para dentro da célula, através da plasmalema, ocorre em conjunto com o transporte da água. Porém, para os solutos há gasto de energia metabólica no processo (direta ou indiretamente) para gerar o gradiente eletroquímico, que ativa os canais e bombas iônicas, e este transporte “ativo” é somado a uma fração negligenciável de transporte passivo desses solutos, e, portanto, o transporte de solutos é independente do movimento de água (Hose et al., 2001). Por isso, a condutividade hidráulica da plasmalema é considerada

68

CARLOS PIMENTEL

quase que exclusiva para a água, com pequeno efeito sobre o transporte de solutos, e a densidade de fluxo de água (Jv) pode ser descrita, segundo Kramer & Boyer, (1995), pela equação:

Jv = Lp (∆Ψa) (eq. 3.4)

onde Lp é a condutividade hidráulica da célula ou do tecido vegetal em estudo, que é variável segundo a intensidade de transpiração (Steudle & Henzler, 1995; Zwieniecki & Holbrook, 2000; Cochard et al, 2002), e ∆Ψa é a diferença de potencial de água entre as duas fases em estudo.

Para o movimento da água no sistema solo-planta-atmosfera, o principal processo, que gera os gradientes, é a transpiração, pois o maior gradiente possível de Ψa no SSPA é o que existe entre a folha e a atmosfera, visto que na atmosfera, a água está no estado gasoso, podendo ocupar um menor volume que no estado líquido ou sólido (não há formação de pontes de H+ no estado gasoso) e ocorre variação da pressão saturante de vapor d’água em função da temperatura ambiente (Angelocci, 2002). Por isto, a atmosfera pode ter os menores valores de Ψa deste sistema (vide Capítulo 2 e os valores apresentados na Tabela 1). Com a perda de água da planta para a atmosfera, há uma redução do Ψa da planta, que se torna mais negativo que o do solo, criando um gradiente para que haja o fluxo de água do solo para as raízes (Figura 1). Neste circuito, o principal ponto de controle do fluxo se situa ao nível dos estômatos, que respondem às variações do Ψa tanto do solo quanto da atmosfera (Aphalo & Jarvis, 1991), mas a Lp da raiz e do xilema também são alterados, em função destes valores de Ψa (Steudle, 2000; Hartung et al., 2002). Portanto, a planta pode sofrer uma deficiência hídrica causada pela atmosfera (quando o DPV é alto) ou pelo solo, quando há falta d’água, e ambas causam fechamento estomático (Schulze, 1986). Em última instância, a umidade relativa do ar, e mais precisamente o DPV do ar, controlam a transpiração, que por sua vez controla a absorção de água pela raiz (Frensch, 1997). Tendo em vista que, em clima tropical, existe um período longo do ano com baixa precipitação e temperaturas não muito baixas e, conseqüentemente, o DPV do ar é alto, as taxas de transpiração nesse período são bastante altas.

Assim, a limitação ao fluxo de água no SSPA se situa ao nível da absorção da água pelo sistema radicular, pois o gradiente de Ψa, entre o solo e a raiz, e a condutividade radicular máxima (a água está no estado líquido) são bem menores que o gradiente e condutividade máximos entre a planta e a atmosfera (a água está no estado gasoso) (Kramer & Boyer, 1995). Por isso, mesmo em condições irrigadas, se a umidade relativa do ar for baixa,

69

A RELAÇÃO DA PLANTA COM A ÁGUA

sobretudo nas horas mais quentes do dia, pode ser necessário diminuir a abertura dos estômatos, reduzindo a condutividade estomática (gs) e, por conseqüência, o fluxo de água da planta para a atmosfera, isso para não haver desidratação do vegetal, pois o fluxo de água do solo para a planta seria menor que o da planta para a atmosfera (Tardieu & Simonneau, 1998). Porém, com a diminuição de gs, o fluxo de CO2 para o interior da folha é reduzido, afetando a fotossíntese e a acumulação de massa seca (Chaves, 1991).

Por outro lado, durante a noite, as temperaturas mais baixas fazem reduzir o DPV da atmosfera e, assim, o fluxo de água da planta para a atmosfera (transpiração) é o mais baixo do dia, permitindo a máxima hidratação da planta (Winter, 1976; Nobel, 1999). Pode-se dizer que as maiores taxas de crescimento vegetal ocorrem à noite, pois a turgescência é máxima; e, por exemplo, para se estudar a respiração de crescimento, as medições devem ser feitas de madrugada, quando o conteúdo em água da planta e a turgescência são os mais altos, associados às temperaturas mais baixas do dia, que fazem com que a respiração de manutenção seja menor, e a de crescimento pode ser alta.

3.3 • A RAIZ EM RELAÇÃO À ÁGUA

O sistema radicular tem uma importância capital para a planta, pois é o órgão responsável pela absorção de água e de nutrientes, assim como para a ancoragem do vegetal no solo. Além disso, o sistema radicular também sintetiza fitormônios essenciais para a parte aérea, principalmente na sua região meristemática, como é o caso das citocininas, das giberelinas e do ácido abscísico (ABA). Os fitormônios sintetizados na raiz são responsáveis, em parte, pela modulação, junto com outros fitormônios e fatores ambientais, do controle de uma série de eventos fisiológicos na parte aérea, tais como o controle da abertura estomática, que regula a transpiração, a atividade fotossintética, o crescimento celular e o direcionamento dos fotoassimilados, produzidos nas folhas, para os diferentes drenos, incluindo a própria raiz (Kramer & Boyer, 1995). O sistema radicular pode servir, também, como dreno de reserva de carboidratos, como no caso da mandioca, cenoura etc. Este acúmulo de carboidratos nas raízes permite aos vegetais, em zona semi- árida, enfrentar os períodos de seca, o que é comum na flora do Nordeste do Brasil; e a seleção de plantas com maior teor de carboidratos nas raízes confere maior tolerância à seca ao dendezeiro (Adjahoussou & Vieira da Silva, 1978) e no algodoeiro (Souza & Vieira da Silva, 1992).

70

CARLOS PIMENTEL

A raiz, em uma seção transversal (Figura 2), é composta por diferentes tipos de tecidos (Esau, 1974): a rizoderme, com os pêlos radiculares se desenvolvendo a partir de suas células (o que aumenta enormemente a área e o volume de absorção de água e de nutrientes); a hipoderme com ou sem a exoderme que, quando existente (a exoderme pode se diferenciar somente nas raízes mais velhas, e não existir em raízes jovens), forma bandas de Cáspari, como a endoderme, e que pode ser uma barreira, mas não impermeável (Sattelmacher, 2001; Hartung et al., 2002) para o movimento radial da água e de íons, nos dois sentidos (Hose et al., 2001); o córtex, com grandes espaços intercelulares, por onde a água e íons têm livre movimento; a endoderme, com as bandas de Cáspari, que parecem ser mais lignificadas que suberizadas (a lignina é mais hidrofílica que a suberina), ao contrário do que se pensava anteriormente, e que, envolvendo as células da endoderme, tornam os espaços intercelulares da endoderme menos permeáveis aos íons e à água (Steudle & Henzler, 1995); e, finalmente, o cilindro central, onde estão os vasos condutores, o xilema e o floema.

71

A RELAÇÃO DA PLANTA COM A ÁGUA

I - Corte longitudinal II - Corte transversal

Figura 2 • I) Corte longitudinal de raiz, mostrando as três principais zonas de absorção de água e II) Corte transversal da raiz, mostrando os principais tecidos

Endoderme

Xilema maturo

Zona suberizada

Raiz secundária

Zona de pêlos

radiculares

Zona de crescimento

(vasos imaturos)

Meristema apical •

Coifa •

Pêlo • radicular

Epiderme • Exoderme •

Córtex •

Endoderme • •

• Xilema

Cilindroc entral

A endoderme, com suas bandas de Cáspari, que se acreditava ser impermeável ao fluxo da água e de íons, não é mais considerada a maior barreira à passagem da água, e não é responsável pela baixa condutividade ao fluxo de água na raiz (Lpr), pois esta se distribui pelo córtex, desde a exoderme até a endoderme (Frensch, 1997; Steudle & Peterson, 1998). Além disso, a exoderme, quando existente, também forma bandas de Cáspari, e pode ser considerada uma barreira importante para a perda de água e íons, para a solução do solo, o que não era discutido nos estudos mais antigos (Blum, 1997; Rieger & Livtin, 1999; Zeier et al., 1999). Contudo, sob condições de alta transpiração, nas horas do dia de maior temperatura e DPV no ar, o fluxo de água, íons e ABA é aumentado, pela passagem destes compostos através da parede da endoderme, em um fluxo apoplástico (aumentando a Lp da raiz), desde a raiz até a câmara subestomática (Sattelmacher, 2001; Hose et al., 2001; e Hartung et al., 2002).

Portanto, a exoderme e a endoderme diminuem o refluxo de íons acumulados no cilindro central e no córtex, dificultando a sua perda para a solução do solo. Acredita-se que a condutividade hidráulica seja distribuída por todas as células da raiz desde a exoderme (quando existente), em vez de se concentrar somente na endoderme, como se pensava anteriormente (Freundl et al., 1998; Steudle & Peterson, 1998). Espécies com raízes mais finas ou com córtex com menor número de células têm maior Lpr, e a extensão longitudinal do córtex parece ser mais determinante para a Lpr que o diâmetro da raiz. Além disto, o gradiente mínimo de Ψa, para gerar o fluxo de água, é mais de duas vezes superior em espécies possuindo a exoderme (laranja, aspargo e dendobrium) que naquelas sem exoderme (pêssego e soja). Portanto, estas características morfológicas parecem causar, em parte, a variabilidade de propriedades hidráulicas existente entre as espécies (Steudle & Peterson, 1998; Rieger & Livtin, 1999).

Atualmente, acredita-se que a composição química da endoderme, e conseqüentemente a sua permeabilidade aos íons e à água, é variável, segundo seu desenvolvimento, e é diferente para mono ou dicotiledôneas. A composição das bandas de Cáspari da endoderme não é simples, e só atualmente vem sendo estudada, sendo provavelmente composta por lignina (em quantidades consideráveis, segundo Steudle, 2000), suberina, celulose e proteínas de parede celular (Zeier & Schreiber, 1999; Wu et al., 2003). Segundo Zeier & Schreiber (1999), as partes jovens das raízes de dicotiledôneas, mais próximas à coifa, apresentam a endoderme no seu estádio I de desenvolvimento, caracterizado por um

72

CARLOS PIMENTEL

baixo conteúdo de suberina e lignina e alto conteúdo de carboidratos e proteínas. Já as partes mais afastadas e mais velhas (80% das raízes estudadas) se encontram no estádio II, inexistente em monocotiledôneas, caracterizado por alta deposição de suberina. As monocotiledôneas não apresentam este estádio II e passam a um estádio III, com grande deposição de lignina. Portanto, as monocotiledôneas podem ser caracterizadas por ter uma alta Lpr, sendo que essa deposição de lignina aumenta a estabilidade mecânica destas células; já as dicotiledôneas podem ser caracterizadas como tendo maior deposição de suberina e, conseqüentemente, tendo menor Lpr, pois a endoderme funciona como uma barreira mais significativa ao movimento de íons e água que nas monocotiledôneas. Contudo, hoje se sabe que há dois tipos de suberina, uma alifática e outra aromática. A primeira é mais hidrofóbica e a segunda é um polímero fenólico, como a lignina, esterificado com o ácido hidróxicinâmico, que é mais hidrofílico, como a lignina (Zeier & Schreiber, 1999; Steudle, 2000).

Portanto, para discutir-se o fluxo de água na raiz, deve-se salientar também, como dito acima, que a endoderme não é mais considerada uma barreira à passagem da água, e não tem sempre a menor condutividade para o fluxo de água na raiz (Frensch, 1997; Steudle & Peterson, 1998).

Quanto à exoderme (hipoderme com bandas de Cáspari), ela sempre foi pouco estudada e suas funções menos conhecidas (Zeier & Schreiber, 1999). Quando existente, ela se desenvolve depois da endoderme, a partir da hipoderme (Sattelmacher, 2001). A grande maioria das angiospermas possui exoderme suberizada, que apresenta, como a endoderme, três estádios de formação, e tem plasmodesmata na mesma freqüência da endoderme, sugerindo que o transporte simplástico em ambas é semelhante. A exoderme representa uma barreira protetora, do apoplasto do córtex para o solo, e pode ter condutividade variável para o fluxo de água e solutos, contribuindo substancialmente para a Lpr (Rieger & Livtin, 1999; Hose et al., 2001). Em raízes maturas, a endoderme pode ser a maior barreira limitante ao fluxo de água, principalmente sob baixas taxas de transpiração (Hose et al., 2001; Hartung et al., 2002), e a exoderme, quando existente, pode causar uma diminuição substancial do fluxo de água (Rieger & Litvin, 1999; Barrowclough et al., 2000), e pode prevenir a desidratação da raiz, quando o Ψa do solo é muito negativo (Sattelmacher, 2001).

73

A RELAÇÃO DA PLANTA COM A ÁGUA

Durante o desenvolvimento da raiz, a seletividade da exoderme pode mudar, como a da endoderme, e ela pode ter uma função crucial em manter o ABA no apoplasto do córtex que, por sua vez, sob aumento do fluxo de água, devido à alta transpiração, passa do simplasto para o apoplasto, causando aumento da Lpr, e é carreado, no apoplasto, pelo fluxo de água, através da parede celular da endoderme, para o cilindro central e xilema. Assim, sob alta transpiração o conteúdo de ABA no xilema se mantém o mesmo ou aumenta (Hartung et al., 2002).

Tanto na exoderme como na endoderme, podem existir células de passagem, com bandas de Cáspari, mas menos suberizada, podendo permitir a passagem de solutos e água. Em Agave desertii, uma xerófita, a Lpr diminui com o dessecamento do solo, devido a um aumento da suberização na exoderme e na endoderme (Hose et al., 2001). Em arroz irrigado, a exoderme serve como proteção para evitar a perda de O2 do córtex para o solo inundado, mas a suberização da exoderme para evitar esta perda de O2 diminui também a passagem de água, podendo ocorrer deficiência hídrica no arroz irrigado, quando há alto DPV na atmosfera (Hose et al., 2001). Por outro lado, a exoderme, quando existente, pode ser mais suberizada, quando a raiz é submetida à deficiência hídrica, impedindo o fluxo de água do córtex para o solo, e as células de passagem destas células são fechadas à passagem de água (Steudle, 2001). A água é uma molécula pequena que pode passar, sob alta disponibilidade de água, através das bandas de Cáspari da exoderme e da endoderme, junto com solutos, como íons, ABA e mesmo PEG (Hose et al., 2001), conforme a Figura 3. Contudo, o maior fluxo de solutos e água se dá pela plasmalema da endoderme, no transporte simplástico, o que permite uma seletividade (Steudle & Henzier, 1995). Porém, com o aumento da transpiração, aumenta a densidade de fluxo radial de água, e este fluxo é compartilhado entre a via simplástica e a apoplástica (discutidas abaixo), sendo esta última aumentada para compensar a perda de água pela transpiração (Hartung et al., 2002). O aumento do fluxo de água pela via apoplástica diminui a Lpr, e, a exemplo do ABA, os solutos dissolvidos podem passar pela parede nas bandas de Cáspari, por arraste do solvente, a água (Sattelmacher, 2001). Dentre estes solutos, o Ca+2, o PEG 1000, o ABA e citocininas apoplásticos podem atravessar as bandas de Cáspari (fluxo apoplástico até o cilindro central), aumentando ou mantendo a sua concentração no xilema quando aumenta a transpiração, o que pode ser benéfico, como o transporte de maior quantidade de ABA, para causar o fechamento dos estômatos na parte aérea (Hose et al., 2001; Hartung et al., 2002).

74

CARLOS PIMENTEL

Portanto, houve uma mudança no conceito sobre o fluxo de água, sob condições de alta transpiração e de dessecamento do solo, tendo em vista os estudos mais recentes sobre a composição da exoderme e na endoderme, assim como sobre as aquaporinas. Nas horas do dia de maior temperatura e DPV no ar, o fluxo de água, íons e ABA é aumentado pela passagem destes compostos através da parede da endoderme, no transporte apoplástico, desde a raiz até a câmara subestomática (Sattelmacher, 2001; Hose et al., 2001; Hartung et al., 2002). Dessa forma, a Lpr pode variar em função do maior ou menor fluxo transpiratório (Tsuda & Tyree, 2000), do grau de dessecamento do solo, pelo bombeamento via aquaporinas (Javot & Maurel, 2002), ou da maturidade do tecido radicular, especialmente da exoderme, quando existente (Barrowclough et al., 2000). Quando a taxa de transpiração é alta, a Lpr aumenta devido ao maior transporte apoplástico (Hartung et al., 2002) e/ou pela ativação das aquaporinas, dependente de energia produzida na respiração, no transporte trancelular (Javot & Maurel, 2002); e quando a taxa de transpiração é baixa, a Lpr diminui, ocorrendo principalmente o transporte célula a célula simplástico (Tsuda & Tyree, 2000).

75

A RELAÇÃO DA PLANTA COM A ÁGUA

Figura 3 • As três vias de transporte de água na raiz: A) via transcelular (célula a célula) pelas aquaporinas; B) via apoplástica (atravessando a endoderme e as bandas de Cáspari); e C) via simplástica (célula a célula)

A

B

C

Bandas de Caspary

Aquaporinas

Bandas de Cáspari Aquaporinas

Córtex Endoderme Cilindro central

Já em uma seção longitudinal, a raiz é composta pela coifa, que é um tecido esclerosado protegendo a ponta da raiz e que serve como proteção durante a penetração no solo; a região meristemática da raiz, protegida pela coifa, que promove o seu crescimento; em seguida há uma pequena zona onde os vasos condutores ainda não se diferenciaram e, por isso, as condutâncias hidráulicas, radial e axial, são semelhantes; acima desta, a outra zona, onde a endoderme e os vasos condutores já se diferenciaram, que é a dos pêlos radiculares, e que fica, em gramíneas, a alguns centímetros do ápex radicular; e, por último, uma zona mais suberizada, com menos pêlos radiculares quanto mais afastada do ápex radicular, onde o movimento de água transcelular, via aquaporinas, pode controlar a densidade do fluxo de água pelas raízes, sobretudo quando o solo está desidratado (Maurel, 1997; Steudle, 2001). Além disso, as raízes produzem um mucigel que influencia o contato com o solo e a absorção de água e nutrientes (McCully, 1995).

A água, além do transporte no sentido transversal, pode se movimentar no sentido longitudinal da raiz até o coleto da planta, sem passar para o xilema; porém, o principal fluxo de água para a parte aérea se dá pelo xilema. Anteriormente, acreditava-se que a principal zona de absorção de água e nutrientes fosse próxima ao ápex, onde a endoderme e os vasos condutores ainda não se diferenciaram, mas esta é uma zona de acumulação de nutrientes, o que levou a essas conclusões errôneas (Steudle & Peterson, 1998). A principal região de absorção de água e de nutrientes fica na zona onde a endoderme e os vasos condutores já se diferenciaram, e na zona dos pêlos radiculares, mais afastada do ápex radicular (Marchner, 1995). Hoje se sabe que, sob boa disponibilidade de água no solo, a zona de absorção de água se estende até 20 a 30cm da coifa e que 80% da água absorvida pela raiz entra pelas raízes secundárias, que têm xilema bem desenvolvido e pêlos radiculares, além do que a mucilagem, produzida por estas raízes, aumenta o contato com o solo na rizosfera, facilitando a absorção de água e nutrientes (McCully, 1995). A zona onde os pêlos radiculares são menos freqüentes, que tem a epiderme mais suberizada (com o movimento de água controlado pelas aquaporinas), também tem uma grande importância na absorção de água e de nutrientes, como o fósforo, pois o volume e a superfície desta zona mais suberizada é muito maior que o da zona não suberizada (sem contar a superfície dos pêlos radiculares). Nesta zona suberizada, a absorção de água ocorre principalmente sob baixa disponibilidade de água no solo, via aquaporinas (Javot & Maurel, 2002).

76

CARLOS PIMENTEL

Além do aumento da superfície radicular promovido pelos pêlos radiculares, vários tipos de plantas são invadidos por fungos, que formam uma associação simbiótica chamada de micorriza, o que promove uma extensão da área e do volume radiculares. Esses fungos podem promover a mineralização e solubilização do fósforo e, em alguns casos, uma maior absorção de água (Kramer & Boyer, 1995).

A quantidade de água absorvida pelo vegetal depende diretamente do volume de solo ocupado, da profusão de ramificações e de pêlos do sistema radicular (McCully, 1995), assim como das associações micorrízicas. Plantas de sistema radicular profundo, que exploram as camadas de solo mais próximas do lençol freático, são, em geral, mais adaptadas à seca que plantas com sistema radicular superficial. Segundo Milburn (1979), as xerófitas de desertos podem ter a parte aérea pequena e as raízes atingindo grandes profundidades (Alhagi: 25m de profundidade; Glycyrrthiza: 15m; Prosopsis: 20m e Andina [Brasil]: 19m) ou grande raio (Tamarix: 40m de raio e Larrea: 27m), para aumentar a captação de água.

Assim sendo, quando há alta disponibilidade de água no solo e o DPV do ar é baixo (baixa taxa de transpiração), o maior fluxo de água ocorre na zona dos pêlos radiculares, pelo transporte célula a célula simplástico, e a menor espessura da raiz, assim como a inexistência da exoderme, aumenta a sua Lp (Rieger & Litvin, 1999). Quando o DPV é alto (alta taxa de transpiração), o transporte de água passa a ser principalmente apoplástico, o que aumenta a Lp (Hartung et al., 2002). Porém, sob desidratação do solo, a zona suberizada das raízes, acima da zona de pêlos radiculares, passa a ter maior importância na absorção de água (Steudle, 2001), com o transporte de água célula a célula transmembranar, pela ativação das aquaporinas (Javot & Maurel, 2002).

Como foi dito anteriormente, as taxas de transpiração de um vegetal de clima tropical são em geral superiores, principalmente nas horas mais quentes do dia, às taxas de absorção de água. Por isto, apesar do sistema radicular não ser um órgão colhido na maioria das culturas e o seu maior desenvolvimento diminuir o índice de colheita (massa seca colhida x massa seca total da planta-1 x 100%) e a produtividade, a seleção de plantas com o sistema radicular mais eficiente na captação de água é de grande importância para a agricultura tropical, sem irrigação. As características de profundidade, volume, área superficial, longevidade e condutância hidráulica da raiz, entre outras, trazem aumento de produtividade, principalmente para uma agricultura tropical de baixo custo tecnológico (Duncan & Baligar, 1991). O

77

A RELAÇÃO DA PLANTA COM A ÁGUA

sistema radicular com maiores superfície de absorção e eficiência na aquisição de água é uma característica desejável para manter a estabilidade de produção, principalmente em épocas de baixa precipitação (Arnon, 1975).

Muitos autores têm sugerido também que o sistema radicular funciona como um sensor primário da deficiência hídrica devido à diminuição do conteúdo de água do solo. Com o dessecamento deste, ocorrem mudanças no metabolismo radicular, tais como a diminuição da síntese de citocininas, aumento da síntese de ABA e distúrbios no metabolismo do nitrogênio, e os produtos dessas mudanças são exportados, via xilema, para a parte aérea, onde causarão mudanças no metabolismo, antes mesmo de ocorrer variação no conteúdo de água das folhas (Davies et al., 1990). A variação do conteúdo de água do solo também causa mudanças na condutividade hidráulica da raiz (Lpr) e, conseqüentemente, no gradiente longitudinal de pressão hidráulica entre a raiz e a parte aérea, que também interfere na atividade fisiológica da parte aérea (Tyree, 1997). Estes componentes hidráulicos também são considerados como sinais entre a raiz e a parte aérea. Portanto, esses sinais, químicos e físicos (fitormônios, compostos orgânicos e alterações da Lpr e do gradiente de Ψa), funcionam como mensageiros primários entre a raiz e a parte aérea, para indução de mudanças fisiológicas, complexas e interativas, da parte aérea, tais como a redução do crescimento, fechamento estomático para redução da transpiração, e aumento ou redução da atividade fotossintética (Frensch & Hsiao, 1994).

A propagação das mudanças na condutividade hidráulica de plântulas de milho, medida em raízes com mais de 500mm de comprimento, ocorre em frações de segundo ao longo dessas raízes (Frensch, 1997). A raiz, no SSPA, apresenta baixa condutância ao fluxo de água, e as propriedades hidráulicas das raízes podem ser descritas por dois parâmetros: a sua Lpr, que é a relação entre a densidade do fluxo e o gradiente de Ψa e o valor do gradiente mínimo de Ψa requerido para induzir o movimento de água (Passioura, 1988; Rieger & Livtin, 1999). O componente radial, mais do que o axial, do movimento de água na raiz limita a absorção de água pela raiz e próximo da coifa da raiz, onde os vasos condutores ainda não se diferenciaram, ambos os componentes, radial e axial, devem ser levados em conta (Steudle, 2001).

Para a análise do balanço e do fluxo de água na planta, o componente de entrada de água pela raiz é tão importante quanto o de perdas de água pela parte aérea. Contudo, o conhecimento sobre o processo de

78

CARLOS PIMENTEL

entrada é menor que aquele sobre as perdas, pois ao contrário da parte aérea, a arquitetura da raiz no solo é de muito mais difícil acesso. A morfologia e a anatomia da raiz devem ser levadas em conta e, além disso, existem interações entre os solutos (nutrientes) e a água, isto é, os processos osmóticos, que influenciam o fluxo de água, além do movimento puramente hidráulico (Kramer & Boyer, 1995).

As raízes não são simplesmente “máquinas hidráulicas”, como no sistema hidráulico de uma casa. Os processos osmóticos, onde existe o transporte ativo de solutos pelos canais e bombas iônicos, e as interações com as paredes celulares complicam a análise do fluxo radicular. Por outro lado, a planta também não funciona como um osmômetro ideal (em analogia com uma célula e seu vacúolo), pois ocorre passagem de água e solutos (nutrientes e solutos de teste) no apoplasto, do córtex até o cilindro central, mesmo com a presença das bandas de Cáspari e a suberização da endoderme e da exoderme, podendo essas estruturas impedir o movimento de certos íons, dependendo da sua polaridade (Steudle, 2001). Além disso, com a falta de água no solo, o transporte transcelular, via aquaporinas, com gasto de energia proveniente da respiração radicular, é ativado (Javot & Maurel, 2002), o que complica mais a análise do fluxo de água nas raízes (Steudle, 2000). O transporte de água, via aquaporinas, é muito mais rápido que o de íons, por exemplo (Passioura, 1988).

Por exemplo, no cálculo da densidade do fluxo de água pela equação de Poiseuille, utilizada anteriormente para descrever a velocidade do movimento de água num tubo capilar “como o xilema” (quando ainda não existiam instrumentos de medição de densidade de fluxo), tem-se valores maiores que aqueles medidos (Nobel, 1999). Isto ocorre porque, apesar do xilema ser composto por células sem citoplasma, existem interações da água com a parede celular e com os poros entre as células dos vasos do xilema (“pits”), que causam variações na Lp do xilema e, portanto, alteram o fluxo de água neste (Tyree, 1997). Além disso, existem hidrogéis no interior do xilema, formados por pectinas, que interferem com a Lp do xilema (Zwieniecki et al., 2001).

Outro conceito que sofreu modificações recentes é o do apoplasto e simplasto da raiz, inicialmente proposto por Münch em 1930, que caracterizava o apoplasto como sendo o compartimento que inclui as paredes celulares e os espaços intercelulares da raiz até a endoderme, que era considerada impermeável à água, e o simplasto como sendo o contínuo de citoplasmas interconectados pelos plasmodesmos, até o cilindro central,

79

A RELAÇÃO DA PLANTA COM A ÁGUA

sendo então considerado o único meio da água atravessar a endoderme. Ele ainda pode ser aceitável para descrever o movimento de alguns íons em raízes, sob baixas taxas de transpiração, porém é insuficiente para a descrição do movimento de água nestas. A principal razão para isto é que a água, como dito anteriormente, se move pelo apoplasto até os vasos condutores, quando a transpiração é alta, atravessando também as bandas de Cáspari da endoderme, que não é mais considerada impermeável à água, mas tem menor condutividade hidráulica (Rieger & Litvin, 1999), e a íons (Sattelmacher, 2001). Atualmente, o apoplasto de um vegetal é considerado como sendo todos os compartimentos do vegetal exteriores à plasmalema celular, e os seus limites são o rizoplano da rizoderme da raiz e a cutícula da epiderme da folha, incluindo o córtex, a endoderme, e o cilindro central da raiz, além do xilema e do mesófilo foliar. Isso muda consideravelmente os conceitos da nutrição mineral, principalmente, sob altas taxas de transpiração (Sattelmacher, 2001).

Outra noção a ser ressaltada é a respeito da direção do fluxo de água na raiz, pois, apesar do fluxo principal se dar da solução do solo para a raiz, existe um pequeno fluxo de água da raiz para a solução do solo (Frensch, 1997; Hartung et al., 2002). Nesse fluxo para fora da raiz, o ácido abscísico (ABA), na forma simples ou esterificado com glicídios (Hartung et al., 2002), que é sintetizado principalmente no citosol das células corticais das raízes, move-se para a solução do solo; e, dependendo do pH e da sua concentração na solução do solo, assim como da taxa transpiratória, o ABA é retranslocado para a planta, via apoplasto radicular, atravessando a endoderme (que lhe é mais permeável em milho que em girassol) até o xilema, para ser transportado para a parte aérea. Portanto, o ABA existente na solução do solo tem uma grande importância na sinalização entre a raiz e a parte aérea, causando também variações na Lpr, o que dificulta a quantificação de ABA na planta, para se avaliar a transdução de sinais de processos fisiológicos, como o fechamento estomático (Freundl et al., 1998).

3.4 • O MOVIMENTO DA ÁGUA NA RAIZ

O movimento radial da água na raiz se dá por três vias: 1) a via apoplástica, pelos espaços intercelulares, da rizoderme até o xilema no cilindro central, passando pela endoderme, onde a passagem de água é dificultada, mas não impedida, e depois nos espaços intercelulares do cilindro central; 2) a via

80

CARLOS PIMENTEL

simplástica, através da absorção da água pelas células da raiz, principalmente através dos pêlos radiculares, onde a água se movimenta pelo citoplasma, passando de uma célula para outra, via plasmodesmata, até o cilindro central, sendo carregada no xilema; e 3) a chamada via transcelular (ela substitui o antigo conceito da via transvacuolar), que também é simplástica, via aquaporinas, mas na qual a água atravessa a plasmalema de cada célula, em vez de passar pelo plasmodesmata, como na via simplástica (Rieger & Litvin, 1999; Steudle, 2000; Hose et al., 2001; Javot & Maurel, 2002). Esta via transcelular não é considerada para o transporte de íons, pois a passagem de íons através da plasmalema é muito mais lenta do que a da água. As duas últimas vias, a simplástica e a transcelular, são chamadas de transporte célula a célula e não são discriminadas, pois não se pode, atualmente, medir e diferenciar o fluxo de água em cada uma delas (Steudle & Peterson, 1998). Por isso, se diz que o fluxo radial de água na raiz se dá por duas vias, a apoplástica e a de célula a célula (Frensch, 1997).

Este movimento de água nas raízes, no sentido radial, ocorre segundo um gradiente de Ψa entre o solo e o xilema no cilindro central, que por sua vez é afetado pelo gradiente entre a parte aérea e a atmosfera (Kramer & Boyer, 1995). Por isso, o gradiente de Ψa entre a raiz e o solo é modificado, segundo a planta transpire mais ou menos; e a perda de água da planta para a atmosfera gera uma tensão no xilema, a qual, segundo a teoria da coesão-tensão das moléculas de água (vide Capítulo 2), se transmite à raiz, reduzindo o Ψa, no xilema e nos tecidos radiculares, para valores abaixo daquele do Ψa no solo, promovendo assim a passagem da água do solo para a raiz (Tyree, 1997).

O aumento da transpiração causa também um incremento da condutividade hidráulica da raiz (com o transporte apoplástico de água), devido ao aumento da tensão da água no xilema e na raiz (Steudle, 2001). O fluxo de água no xilema é governado principalmente pela pressão hidrostática, enquanto que, no fluxo radial da raiz, o gradiente de Ψa pode ter uma natureza hidrostática, osmótica ou mesmo matricial. Na ausência de transpiração durante a noite, por exemplo, com uma umidade relativa mais alta, devido à menor temperatura do ar, o gradiente osmótico domina, na chamada pressão radicular, gerando os fenômenos de gutação, exudação do xilema e de gomas em ferimentos (Kramer & Boyer, 1995). A maior ou menor importância do componente hidrostático ou osmótico, no movimento radial de água, varia com a espécie. Em árvores o componente hidrostático é de uma a três vezes superior ao componente osmótico, enquanto que não há diferenças entre estes componentes em feijão e cevada (Frensch, 1997). O

81

A RELAÇÃO DA PLANTA COM A ÁGUA

componente hidrostático também pode causar variação da densidade de fluxo em até três vezes, segundo a espécie e as condições ambientais (Steudle, 2001). Em plantas sob alta taxa transpiratória, o gradiente de pressão hidrostática entre o solo e xilema é grande e a Lpr é alta, o que facilita a absorção de água, pela via apoplástica, quando aumenta a demanda. Quando a transpiração é baixa, a Lpr diminui, a planta fica protegida de perdas excessivas de água e, nesse caso, o componente osmótico, nas vias de célula a célula, tem maior importância para o fluxo de água na planta (Steudle & Peterson, 1998).

3.5 • O XILEMA E O TRANSPORTE DE ÁGUA

Os vegetais vasculares desenvolveram dois tipos de células para o movimento de água e solutos entre diferentes órgãos: as células do floema e as células do xilema. Em ambos os tipos de célula há uma perda do protoplasma, o que diminui a resistência ao fluxo de água, e no floema há também uma perda parcial ou total da parede celular entre células adjacentes. Neste sistema, o transporte de água para a parte aérea se dá principalmente pelo xilema (Esau, 1974), cujas células tem parede celular secundária espessa e lignificada, o protoplasma desaparece com a sua maturação (protoxilema passando a metaxilema) e, em alguns casos, ocorre a desintegração de algumas paredes celulares e redução das paredes restantes, que passam a ter poros (“pits”) ligando as células adjacentes, o que diminui o número de paredes celulares a serem transpostas pela água (Nobel, 1999).

Dois tipos de células de condução de água podem existir no xilema: os elementos do vaso lenhoso, encontrados em angiospermas, e os traqueídeos, filogeneticamente mais primitivos, encontrados nas angiospermas, gimnospermas e plantas vasculares inferiores. Os traqueídeos são células fusiformes com paredes espessas e angulares, também contendo perfurações na parede entre dois traqueídeos. Já os elementos do vaso lenhoso são células menores e mais largas, com desintegração parcial ou total da parede transversal entre várias células-elementos, formando um vaso lenhoso que, por sua vez, no seu conjunto, forma o xilema (Esaú, 1974). Ao lado destes dois tipos de vasos condutores, existem células de parênquima e células fibrosas. Estas últimas são células finas com parede lignificada e contribuem para suportar a estrutura da planta. Já as células vivas do parênquima no xilema são importantes para estocar carboidratos e para o movimento lateral de água e solutos para dentro e fora das células condutoras, que tanto nos traqueídeos como nos elementos do vaso possuem pontuações nas paredes longitudinais,

82

CARLOS PIMENTEL

para o movimento lateral de solutos e água. O diâmetro dos elementos do xilema pode variar de 8 a 500µm, e as células condutoras variam em comprimento de 1 a 10mm nos traqueídeos e de 0,2 a 3mm nos elementos do vaso, e cada vaso pode ter um comprimento que varia de 10mm a 10m (Steudle & Peterson, 1998).

Devido à existência destas paredes perfuradas, e às vezes também da plasmalema, o transporte de água no xilema tem uma menor condutividade que um tubo, de mesmo diâmetro, sem essas paredes celulares dos elementos do vaso lenhoso. Esta menor condutividade não impede o fluxo de água para a parte aérea, sendo que a condutividade radial na raiz é mais importante (70 a 90% do controle do fluxo na planta) que a condutividade longitudinal (10 a 30% do controle), e a primeira é que controla a absorção de água (Steudle & Peterson, 1998). Zwieniecki et al. (2001) sugerem que os poros entre os vasos lenhosos são alterados pelo intumescimento de pectinas, conhecidas como hidrogel, o que faz variar a condutividade hidráulica do vaso. A menor condutividade longitudinal no xilema, comparada a um tubo contínuo, diminui o fluxo de água, em condições de alta demanda transpiratória, impedindo a quebra da coluna de água. Por isso, deve-se ressaltar que devido a essa disrupção da continuidade do fluxo causada pela passagem da água através das plasmalemas e poros das paredes celulares entre as células dos vasos do xilema, o fluxo de água em tecidos vegetais freqüentemente é bastante diferente dos valores calculados pela equação de Pouiseuille, usada para tubos capilares (Teare & Peet, 1983; Frensch, 1997; Nobel 1999). Segundo cálculos apresentados por Steudle & Peterson (1998), um metaxilema de uma raiz de milho tem um diâmetro de 23µm, e teria uma resistência hidráulica por metro de comprimento, segundo a equação de Pouiseuille, de 1,4 x 1011 MPa s m-3. Porém medições in situ da condutividade hidráulica de membranas de células corticais, extrapoladas para apenas uma membrana celular do xilema, dariam uma resistência de 3,4 x 1015 MPa s m-3, o que equivaleria a um cilindro sem membranas de 24km (Nobel, 1999).

A teoria da ascensão da água por capilaridade no xilema é baseada no fato da atração água-parede celular (força de adesão) ser considerável, quando comparada com a coesão entre as moléculas de água, ocorrendo assim a ascensão da água (num tubo de pequeno diâmetro), no processo chamado de capilaridade. Devido à força gravitacional, ocorre uma depressão do líquido no centro do tubo, com a formação de um menisco, com um ângulo de contato inclinado em relação à parede do tubo (α), que depende do raio do tubo (r) e do material do qual é feito o tubo, que vai gerar as forças de coesão-

83

A RELAÇÃO DA PLANTA COM A ÁGUA

tensão com as moléculas de água (um tubo de polietileno tem α = 94° e de parafina tem α = 110°). A altura que um líquido ascende por capilaridade (h) depende da sua densidade (ρ), da força da gravidade (g) e da tensão superficial da parede do tubo (σ), e é calculada pela equação: h = (2 σ cos α) / (r ρ g). Contudo essa força capilar pode ser suficiente para explicar a ascensão de água no xilema de plantas de pequeno porte mas, para que a água atinja o topo de uma árvore de 30m de altura, o raio do xilema deveria ser de no máximo 0,5mm, o que é um valor muito menor que o encontrado para estas árvores (Nobel, 1999).

A principal teoria para explicar a ascensão da água pelo xilema é a teoria da coesão-tensão da água, proposta no século passado. Recentemente, Balling & Zimmermann (1990), usando uma sonda de pressão no xilema, criticaram essa teoria para o transporte de água quando o Ψa é menor que -0,6 MPa. O problema com as medições do Ψa do xilema pela sonda de pressão é que a entrada da sonda no xilema sob tensão pode desequilibrar esta (Kramer & Boyer, 1995). Contudo, Tyree (1997), numa revisão baseada em vários estudos sobre a teoria da coesão-tensão e do uso da bomba de pressão, confirmou a validade da teoria da coesão-tensão, e das medições do Ψa do xilema com a bomba de pressão. Mais estudos são necessários antes que alguma conclusão definitiva possa ser tirada, porém, atualmente, a teoria da coesão-tensão é vista como a melhor explicação para a ascensão da água no xilema (Kramer & Boyer, 1995).

Segundo a teoria da coesão-tensão, a água ascende pelo xilema sob tensão, onde o ΨT do xilema é menor que a pressão parcial de vapor da água, e a força que governa o movimento da água no xilema é gerada pela tensão superficial na superfície de evaporação da água na folha, essencialmente na câmara subestomática. Essa tensão é transmitida pela contínua coluna de água no xilema, desde a folha até o ápice radicular, e através de todas as partes do apoplasto em todos os órgãos do vegetal, como num circuito elétrico, para o fluxo da corrente elétrica (Tyree, 1997). A energia para o processo de evaporação da água provém do sol, que aquece a folha. Quando a energia térmica da folha é maior que o calor de vaporização da água, o tecido vegetal cede energia térmica para a água líquida, rompendo as pontes de hidrogênio entre as moléculas de água líquida, promovendo a sua passagem do estado líquido para o estado gasoso (Kramer & Boyer, 1995). As pontes de hidrogênio da molécula da água são responsáveis pelo seu alto calor de vaporização, pelas forças de adesão entre as suas moléculas e pela tensão superficial com as paredes do xilema (vide Capítulo 2).

84

CARLOS PIMENTEL

A tensão superficial criada nas paredes celulares no mesófilo ou na câmara subestomática (não se pode ainda estabelecer exatamente onde ocorre a evaporação da água), onde a água está se evaporando, provoca uma diminuição do Ψa das células vizinhas; esta diminuição do Ψa vai sendo transmitida de célula a célula até o xilema, promovendo o movimento da água do xilema para a região onde a água está se evaporando. A diminuição do Ψa se propaga através do xilema, até o sistema radicular, causando a passagem de água da raiz para o xilema, tornando o Ψa da raiz mais negativo, quando comparado ao valor deste no solo; e devido ao gradiente de Ψa criado entre a raiz e o solo, ocorre a passagem de água do solo para a raiz (Kramer & Boyer, 1995).

Quando o ΨT do xilema é negativo, devido a alta transpiração por exemplo, bolhas de ar podem ser aspiradas das paredes celulares para o interior do xilema (“air-seed”), causando o fenômeno de cavitação, ou seja, formação de bolhas de ar em cada célula do xilema, a exemplo do que ocorre com a água gelada despejada em um copo (Tyree, 1997). E, caso a bolha de ar se expanda, ocupando todo o lúmem do vaso, pode ocorrer embolismo (bolhas grandes o suficiente, com o diâmetro do vaso do xilema, para interromper o fluxo de água) e quebra da coluna de água, o que pode causar a perda da funcionalidade daquele xilema. Contudo, a coluna de água pode ser restabelecida, dependendo das tensões e da extensão do embolismo (Zwieniecki & Holbrook, 2000; Cochard et al., 2002). Segundo Tyree (1997), estas bolhas de ar raramente são estáveis em xilemas mais jovens, onde os poros (“pits”) nas paredes celulares, entre as células dos vasos do xilema, têm menos de 0,1mm. Devido à grande tensão gerada pela transpiração num tubo de pequeno diâmetro e a passagem da água e dos gases através das membranas das células do xilema nos poros, a bolha de ar é rompida em bolhas menores que são dissolvidas na água em movimento (Zwieniecki & Holbrook, 2000; Cochard et al., 2002). Portanto, segundo estes autores, plantas que possuam paredes intercelulares no xilema bem desenvolvidas e robustas, com poros de pequeno diâmetro, suportam altas tensões no xilema, sem haver embolismo deste. Zwieniecki & Holbrook (2000) e Cochard et al. (2002) sugerem que o principal objetivo do fechamento estomático é evitar a cavitação e uma catastrófica falha do sistema de condução de água, em vez de simplesmente objetivar a redução das perdas de água pela transpiração.

Além disso, no xilema, mudanças na condutividade hidráulica ocorrem em resposta às variações na concentração de íons, pH e solventes apolares, que são mediados por hidrogéis existentes no interior do xilema,

85

A RELAÇÃO DA PLANTA COM A ÁGUA

formados por pectinas, cuja atividade é controlada pela planta, o que muda o antigo conceito de que o xilema é um “tubo inerte”, e sugere um mecanismo pelo qual as plantas controlam seu fluxo interno (Zwieniecki et al., 2001). Estes fenômenos afetam a velocidade do fluxo de água no xilema, que portanto não pode ser considerado simplesmente pelo seu componente hidráulico, e fazem com que a condutividade hidráulica do xilema seja variável, em função do ambiente onde a planta se encontra (Steudle, 2001).

3.6 • A FOLHA EM RELAÇÃO À ÁGUA

A folha é resultado altamente refinado da evolução, pois não só é uma combinação de tecidos diferentes, com funções distintas atuando em conjunto, mas também com diferentes arranjos espaciais para caracterizar a forma da folha, que varia consideravelmente entre espécies e em função do ambiente. A maioria das plantas cultivadas é chamada de mesófita, pois se desenvolve em um ambiente com abundante disponibilidade de água no solo e umidade do ar relativamente alta; aquelas que se desenvolvem em ambientes áridos são chamadas de xerófitas; aquelas que se desenvolvem em um meio aquático são hidrófitas (ou higrófitas); e aquelas que se desenvolvem melhor em ambientes salinos são chamadas de halófitas, enquanto as que não se desenvolvem bem nestes ambientes são glicófitas (Milburn, 1979).

A folha, em um corte transversal, é constituída de diferentes tecidos, segundo Esau (1974): a epiderme superior e inferior; o mesófilo, caracterizado pela abundância de cloroplastos e que se distingue em parênquima paliçádico, na face superior (dorsal ou adaxial) da folha, e parênquima lacunoso (ou esponjoso), na face inferior (ventral ou abaxial); e o sistema vascular, no plano mediano da lâmina foliar. A epiderme é caracterizada por um conjunto de células dispostas compactamente, com presença de cutícula e estômatos, que podem ocorrer em ambas as faces (com menor número na face superior) ou somente na face inferior. Em folhas de dicotiledôneas, os estômatos estão dispersos ao acaso e, nas monocotiledôneas, e coníferas, os estômatos se dispõem em fileiras paralelas ao eixo maior da folha. Os estômatos podem se localizar ao mesmo nível das células epidérmicas (nas mesófitas), acima da epiderme (nas hidrófitas), ou em depressões, abaixo da epiderme (nas xerófitas) (Raven et al., 2001). A cutícula é uma camada, maior ou menor segundo as espécies, de material graxo, a cutina, mais ou menos impermeável à água, na parede externa da epiderme, e pode ser composta de várias placas delgadas (Figura 4), cuja principal

86

CARLOS PIMENTEL

função é minimizar as perdas de água da folha, quando os estômatos estão fechados (Chamel et al., 1991). Na epiderme podem ocorrer pêlos, chamados de tricomas (Figura 5), que podem ter uma função de diminuir o aquecimento da folha e a evaporação da água ou, nas plantas halófitas, de extrusão de sais para a superfície das folhas (Poljakoff-Mayber, A. & Lerner, 1994). O mesófilo é constituído pelo parênquima paliçádico, que são

87

A RELAÇÃO DA PLANTA COM A ÁGUA

Figura 4 • Cutícula de Clivia nobilis

Estômato

• Cutícula

• Epiderme

• Células do mesófilo

Figura 5 • Tricomas (pêlos) na superfície de folha de Talonnia tomentosa

células alongadas, dispostas perpendicularmente à superfície da folha, com menos espaços intercelulares, e do parênquima lacunoso, que são células irregulares com mais espaços intercelulares. A estrutura frouxa do mesófilo é responsável pela existência de uma grande superfície em contato com o ar no interior da folha, para promover as trocas gasosas de água e de CO2 (Lüttge et al., 1996). Já o sistema vascular da folha tem estreita relação espacial com o mesófilo e é composto por feixes vasculares, que se ramificam e são chamados de nervuras. A disposição destes é chamada de venação, que pode ser reticulada, mais comum em dicotiledôneas, ou paralela, mais comum em monocotiledôneas. Os feixes menores, localizados no mesófilo, apresentam-se envolvidos por uma ou mais camadas de células, que se dispõem compactamente, constituindo a bainha do feixe (Esau, 1974), o que permite a passagem da água do xilema para as células do mesófilo, e dos fotoassimilados produzidos no mesófilo para o floema. Em plantas C4, a bainha do feixe é chamada de bainha perivascular, e, além da função de permitir um contato direto com os vasos condutores, tem a função de produzir os carboidratos, pela via C3, que ocorre somente nessas células da bainha perivascular. A via C4 ocorre nas outras células do mesófilo. Toda a produção de amido nas plantas C4 cultivadas ocorre na bainha perivascular, enquanto nas C3 isto ocorre em todas as células do mesófilo (Pimentel, 1998).

Adaptações evolutivas das plantas aos diferentes habitats, especialmente no que diz respeito à disponibilidade da água, podem estar associadas a características estruturais diferentes. No caso das plantas xerófitas, existe uma elevada relação volume-superfície, isto é, as folhas são pequenas e compactas, com mesófilo espesso, com o parênquima paliçádico mais desenvolvido que o lacunoso, pequeno volume de espaço intercelular, rede vascular compacta e, algumas vezes, com células pequenas (Esau, 1974). As xerófitas apresentam muitas vezes uma hipoderme (tecido com poucos cloroplastos ou desprovido deles, segundo Esau, 1974), ou também chamada de epiderme múltipla (três camadas em Nerium oleander - Figura 6), principalmente na epiderme superior. Elas apresentam também cutícula e parede celular, principalmente da epiderme, mais espessas, estômatos em depressões e tricomas, que são características que podem reduzir a perda de água pelas plantas (Raven et al., 2001).

88

CARLOS PIMENTEL

3.7 • O MOVIMENTO DE ÁGUA NA FOLHA

O movimento de água na folha é complexo e a água se movimenta entre pontos com diferentes Ψa, seguindo o caminho com maior condutância hidráulica. Assim sendo, o transporte de água provavelmente ocorre menos pela via simplástica, com menor condutância hidráulica, e mais pelas paredes celulares e espaços intercelulares, o apoplasto da folha, que corresponde a 70% do volume da folha em plantas de sombra e 20% em plantas de sol (Kramer & Boyer, 1995). Tendo em vista que a demanda de água pela atmosfera é grande (vide Capítulo 2), mesmo sob cultivo irrigado, a folha sofre um abaixamento do Ψa nas horas mais quentes do dia, quando o DPV é máximo (Tardieu & Simonneau, 1998). Por isto, o sistema vascular e o pecíolo das folhas têm um conjunto de células, o colênquima (células vivas com parede celular espessa), que serve como suporte, quando a turgescência celular foliar diminui, na chamada “murcha” das folhas (Milburn, 1979).

A evaporação da água na folha ocorre, segundo a maioria dos autores, da parede celular do mesófilo para os espaços intercelulares, e passa para a atmosfera via estômatos. Contudo, alguns autores argumentam que a água se evapora na superfície interna da epiderme próxima às células-

89

A RELAÇÃO DA PLANTA COM A ÁGUA

• Epiderme • Subepiderme

• Parênquima palissádico

• Parênquima lacunoso

Estômatos em cripta

Pêlos

Figura 6 • Anatomia foliar de Nerium oleander, mostrando a tripla camada epidérmica

guardas dos estômatos. Atualmente, acredita-se que a água se evapore na superfície das células do mesófilo, passando para os espaços intercelulares e daí para a atmosfera via estômatos, mas também, em uma pequena parte, pela cutícula da epiderme (Kramer & Boyer, 1995).

Apesar do principal fluxo de água, da planta para a atmosfera, ocorrer através dos estômatos (a condutância estomática máxima, gs, varia de 0,21 mol m-2 s-1, em gramíneas C3 e C4, a 0,15 mol m

-2 s-1, em plantas de deserto, ou a 0,08 mol m-2 s-1, em plantas suculentas), em condições de déficit de água, os estômatos se fecham e a perda de água para a atmosfera se dá pela cutícula (a condutância cuticular pode variar em mesófitas, de 0,0069 mol m- 2 s-1, em algodão, a 0,0219 mol m-2 s-1, em feijão comum, e em xerófitas, de 0,0043 mol m-2 s-1, em Zygophyllum dumosum a 0,0010 mol m-2 s-1 em Haloxylon articulatum), segundo Weyers & Meidner (1990).

3.8 • A CAMADA-LIMITE À FOLHA

A camada-limite à folha deve ser distinguida do restante da atmosfera, pois com a evaporação da água da folha, passando pela abertura estomática, cria-se uma pequena camada de ar ao redor da folha com alta concentração de água (formam-se conchas com alta concentração de vapor de água concêntricas à abertura dos estômatos), com fluxo de ar paralelo à folha plana, devido ao efeito do vento (Angelocci, 2002), e que tem uma concentração de água superior ao restante da atmosfera, onde o ar é mais turbulento (logo acima da camada-limite), pelo efeito do vento (Nobel, 1999).

Esta camada-limite tem espessura que é dependente de uma série de fatores, tais como: a anatomia de folha, o seu tamanho e forma, e a presença de pêlos (tricomas) que retêm o vapor de água; a velocidade do vento, que, segundo Milburn (1979), pode reduzir a espessura desta camada de 4mm para 0,4mm ou menos; e a temperatura e a concentração de água na folha e no ar (Kramer & Boyer, 1995). Assim, o valor real da espessura desta camada limite é variável e é calculada empiricamente (Angelocci, 2002), principalmente para uso nos equipamentos de medição das trocas gasosas de CO2 e de H2O (Long & Hallgren, 1993).

90

CARLOS PIMENTEL

91

A RELAÇÃO DA PLANTA COM A ÁGUA

A Perda de Água Pelas Plantas e o seu Controle

Capítulo 4

4.1 • INTRODUÇÃO

Desde o início do século XX, os fisiologistas vegetais já se preocupavam com o efeito da perda de água pela transpiração sobre o crescimento, assimilação do CO2 e balanço de energia da planta, como Pfeffer (1912): “Em função da transpiração e do fornecimento de água, o estado de turgescência e, por conseqüência, o crescimento das plantas terrestres é submetido a variações consideráveis e, quando a planta murcha, pode ocorrer paralisação do crescimento.”; “O crescimento depende enormemente da água que a planta contém e que pode obter. Uma ligeira queda da turgescência celular é suficiente para causar uma diminuição notável do crescimento celular e, quando a membrana celular deixa de estar sob pressão (pressão de turgescência), o crescimento cessa.”; ou os textos de Maximov (1929):

“As folhas devem manter a comunicação entre as células do clorênquima e a atmosfera, que contém o dióxido de carbono necessário à nutrição vegetal. O inevitável resultado disto é o processo de perda de água conhecido como transpiração e, se a transpiração excede a absorção de água, a planta murcha ou mesmo morre. O trabalho de vaporização da água na folha consome em torno de 80% ou mais da energia solar absorvida por esta.”; “Em milho, os estômatos se fecham no meio do dia em dias quentes, mesmo quando as plantas estão bem supridas em água. A causa desta regulação (da transpiração, via fechamento estomático) eu estou inclinado a buscar nas condições de suprimento de água e no movimento da água pela planta, pois com a coesão entre as partículas da coluna de água formada na planta de cima até embaixo, um retardo no movimento de água embaixo inevitavelmente envolve um retardo em cima. E assim, a pressão de vapor de água, na superfície das paredes das células (do mesófilo foliar), onde ocorre a evaporação da água, diminui e a transpiração decresce. À medida que a perda de água excede a absorção (pelas raízes), a resistência ao fluxo de água nos espaços intercelulares aumenta.”

A transpiração é considerada a perda de água das plantas para a atmosfera, na forma de vapor de água, e é o processo dominante nas relações da planta com a água. Isto ocorre por causa do grande volume envolvido no processo e seu efeito no conteúdo de água da planta, assim como na geração de um gradiente de energia (Ψa), que é o principal fator de controle da absorção de água do solo e de sua ascensão à parte aérea, junto com os nutrientes, pelo xilema (Sutcliffe, 1971; Winter, 1976; Milburn, 1979). Durante o seu tempo de vida, a planta transporta uma quantidade imensa de

92

CARLOS PIMENTEL

água, na proporção de 200 a 1000 vezes a sua massa seca. A água perdida para a atmosfera, pela transpiração, é uma conseqüência inevitável da necessidade de assimilação do CO2 atmosférico, pela fotossíntese, pois, quando a planta abre os estômatos para a aquisição do CO2, ocorre a perda de água pela transpiração (Hsiao & Xu, 2000). Em dias quentes e ensolarados, mesmo em um campo irrigado, a transpiração pode causar uma murcha transiente no meio do dia e, com o dessecamento do solo, ela pode causar a murcha permanente e morte por desidratação, se a umidade do solo não for reposta por chuvas ou por irrigação. No mundo, provavelmente mais plantas sofrem injúrias ou morrem por desidratação causada pela transpiração excessiva que por nenhum outro único fator (Kramer & Boyer, 1995).

Durante os últimos 400.000.000 de anos de evolução das plantas, o número de estômatos por folha aumentou dramaticamente, especialmente há 360.000.000 de anos, na evolução da microflora para a macroflora, quando ocorreu uma diminuição significativa na concentração de CO2 atmosférico. Contudo, com a pressão seletiva de ambientes secos e salinos, as diferentes vias fotossintéticas (C3, C4 e CAM) e variações no comportamento estomático entre espécies começaram a evoluir (Dietrich et al., 2001).

4. 2 • A PERDA DE ÁGUA PELA TRANSPIRAÇÃO

Portanto, para a compreensão da importância dos efeitos da perda de água pela transpiração, principalmente em clima tropical submetido a altas variações de temperaturas, deve-se ter uma visão biofísica do processo. Segundo Nobel (1999), uma superfície úmida exposta ao ar perde tanto mais água, na forma de vapor por unidade de área e de tempo, quanto maior for o gradiente de pressão de vapor entre essa superfície e o ar, que, por sua vez, depende da temperatura ambiente. Isto é, quando a concentração de vapor d’água logo acima da superfície úmida (na camada-limite à folha, por exemplo) é maior que a do ar mais distante desta superfície. A evaporação, em condições não limitadas de suprimento hídrico e sem impedimento de difusão de vapor d’água (para a planta, isto ocorre quando os estômatos estão completamente abertos), é denominada de evaporação potencial, e nas regiões subtropicais áridas pode chegar a 10-15 kg H2O m

-2 dia-1; em clima mediterrâneo; no período seco, chega a 5-6 kg H2O m

-2 dia-1, na zona equatorial, 3-4 kg H2O m-2 dia-1; e na zona temperada pode chegar a 4 kg H2O m

-2 dia-1, em dias claros de verão, mas em média, e durante o período de crescimento da vegetação, fica por volta de 2 kg H2O m

-2 dia-1 (Larcher, 2000).

93

A RELAÇÃO DA PLANTA COM A ÁGUA

A importância da quantidade de água perdida pela transpiração é salientada quando se analisam os números, como a perda de 200kg de água por uma planta de milho durante todo o seu ciclo, ou que são necessárias várias centenas de gramas de água para produzir um grama de massa seca na planta, sendo que aproximadamente 95% desta água são perdidos pela transpiração (Schroeder et al., 2001). A transpiração tem efeitos benéficos e nocivos. Os efeitos benéficos são o resfriamento da folha, devido ao alto calor de vaporização da água (Capítulo 2 e Quadro 1), aceleração da ascensão da seiva do xilema e aumento da absorção de minerais. Já os efeitos nocivos são numerosos, como as injúrias causadas, até a morte, por desidratação. Contudo, a transpiração é um processo indispensável, pois a estrutura foliar favorável à absorção do CO2 pela fotossíntese é também favorável à perda de água. A evolução da estrutura foliar para privilegiar altas taxas fotossintéticas aparentemente teve maior valor para a sobrevivência, na maioria dos habitat, que uma estrutura para a conservação de água, mas que reduziria a fotossíntese, como no caso das plantas xerófitas (Figura 7). Por isso, a anatomia de plantas mesófitas (Figura 7) leva-as a conviver com o perigo de injúrias causadas por uma transpiração excessiva (Kramer & Boyer, 1995). Portanto, segundo Schulze (1986), a planta pode sofrer uma falta de água causada pela atmosfera e/ou, pelo solo, quando ambos estão com baixos conteúdos de água, e em ambos os casos pode ocorrer a desidratação da planta.

Assim, o controle da abertura estomática é primordial para a manutenção da taxa fotossintética máxima com uma mínima taxa de transpiração, tendo prioridade para manter a máxima fotossíntese, com a

94

CARLOS PIMENTEL

Figura 7 • Anatomia de folha de várias xerófitas e uma mesófita

Festuca ovina

Salsola kali

Ammophila arenariaGlycine max

A - Mesófita B - Xerófitas

menor perda de água possível (Farquhar & Sharkey, 1982). A relação entre estas duas taxas é variável entre espécies e dentro da espécie, e é chamada de eficiência no uso de água, podendo ser usada como variável fisiológica de uso na seleção de plantas (Osmond et al., 1980; Pimentel et al., 1999b). A evolução das vias fotossintéticas C4 e CAM ocorreu provavelmente a partir da via C3, devido à pressão seletiva para ambientes secos, salinos e com temperaturas altas, com base no metabolismo de carbono e eficiência no uso de água. Enquanto as C3 perdem em torno de 600 moléculas de H2O por molécula de CO2 fixada, as C4 e CAM perdem em torno de 100 e 10 moléculas de H2O por molécula de CO2 fixada, respectivamente (Dietrich, 2001).

A água evapora de toda a superfície da planta em contato com a atmosfera, como a parede externa, mais ou menos cutinizada, da epiderme (transpiração cuticular, que no máximo varia de 2 a 20 mmol.m-2.s-1) e de toda a superfície interna, que está em contato com o ar, nas paredes das células do mesófilo foliar passando para os espaços intercelulares, e destes para o exterior da planta, via estômatos (condutância estomática, que, para estômatos abertos, pode variar de 160 a 800 mmol.m-2.s-1), passando pela camada-limite (com valores típicos de 300 a 3000 mmol.m-2.s-1; mesmo com estes altos valores, a camada-limite serve para refrear a transpiração) e alcançando a atmosfera aberta (Larcher, 2000).

Os fatores ambientais influenciam a transpiração na medida em que alteram o gradiente de vapor d’água entre a superfície da folha e o ar que a envolve, e os principais fatores que afetam a transpiração são o balanço de energia entre o sol e a folha, a umidade e temperatura do ar, o vento e a disponibilidade hídrica do solo (Angelocci, 2002). Portanto, a transpiração intensifica-se com a diminuição da umidade relativa do ar e com o aumento da temperatura do ar, como discutido no Capítulo 2 (Tabela 1). Um exemplo dessa relação, e dos valores do gradiente de concentração de vapor d’água, é dado por Nobel (1999): uma folha de uma planta mesófita (com um Ψa de -1,0 MPa nas paredes celulares do mesófilo), ao absorver radiação luminosa, se aquece a 25°C, enquanto o ar está a 20°C (a camada-limite tem um valor de temperatura intermediário), e terá uma umidade relativa e concentração de vapor de água, respectivamente, de 99% e 1,27 mol m-3, nos espaços intercelulares da folha, 95% e 1,21 mol m-3, na câmara subestomática, 47% e 0,60 mol m-3, na camada-limite da folha, e 50% e 0,48 mol m-3, no ar turbulento (Note-se que apesar da umidade relativa do ar [50%] ser superior àquela da camada-limite [47%], a concentração de água no ar [0,48 mol m-3] é menor que a da camada-limite [0,60 mol m-3], devido à temperatura do ar ser maior que a da camada-limite).

95

A RELAÇÃO DA PLANTA COM A ÁGUA

A taxa de transpiração depende do suprimento de água na superfície de evaporação, do suprimento de energia para vaporizar a água, do gradiente de Ψa entre a planta e a atmosfera, das condutâncias radicular, xilemática, estomática e cuticular, assim como da anatomia da folha, principalmente da área foliar (Kramer & Boyer, 1995; Tyree, 1997). A taxa de transpiração é usualmente alta para plantas com grande área foliar, mas a taxa fotossintética também o é. Contudo, para clima tropical, onde freqüentemente ocorre excesso de radiação luminosa causando fotoinibição, folhas menos largas, porém mais espessas, poderiam conter o mesmo número de células e de cloroplastos e, assim, manter a taxa fotossintética alta (que depende do número e atividade dos cloroplastos), com uma menor superfície de transpiração (Pimentel, 1998). As taxas de transpiração máximas, quando os estômatos estão abertos, são relacionadas à morfologia e ecologia da planta, como visto, podendo ser muito variáveis. Segundo Larcher (2000), árvores de florestas tropicais chuvosas podem transpirar até 1800 mmoles H2O m

-2 s-1; palmeiras de trópico semi-árido, de 1200 a 1800; leguminosas herbáceas, de 9000 a 11000; gramíneas de campos, de 5000 a 10000; halófitas, de 1200 a 2500; espécies de deserto, de 1000 a 5000; e cactáceas, de 600 a 1800.

Como em clima tropical, principalmente, a quantidade de energia solar incidente sobre as plantas é grande, e poucas vezes limitante, o gradiente de pressão de vapor de água entre a superfície de evaporação na folha e o ar, que pode ser bastante alto devido às altas temperaturas do ar, controla a transpiração, que pode ser diminuída pelo fechamento dos estômatos, quando o suprimento de água do solo é diminuído (Nobel, 1999; Angelocci, 2002). A pressão de vapor do ar, e a sua conseqüente umidade relativa, dependem do conteúdo em água do ar e de sua temperatura, como visto no Capítulo 2, assim como a da folha, que depende de seu Ψa e de sua temperatura. O Ψa de um tecido vegetal completamente túrgido é próximo de zero, mas os tecidos de uma planta transpirando excessivamente podem chegar a -1,0 MPa ou menos, mesmo com o solo na capacidade de campo (Pimentel et al., 1999c). Contudo, segundo Kramer & Boyer (1995), uma grande redução do Ψa da célula (água no estado líquido) causa apenas uma pequena redução na pressão de vapor de água nesta e, a 30°C com um Ψa de -3,0 MPa, a pressão de vapor de água na célula é de cerca de 98% da água pura e, assim, uma grande redução no Ψa da célula causa pouco efeito na taxa de evaporação da superfície celular.

Já no ar ocorre uma grande variação na pressão de vapor de água com a redução do Ψa do ar (água no estado de vapor; vide Capítulo 2 e, neste meio, a temperatura exerce uma grande influência na concentração de água, por estar

96

CARLOS PIMENTEL

no estado de vapor (Angelocci, 2002; Pereira et al., 2002). A meteorologia enfatiza o uso da umidade relativa do ar, que é o conteúdo de água em termos de porcentagem da saturação naquela temperatura, em vez da umidade absoluta, que é o conteúdo de água em g m-3. Contudo, sem haver variação na condutância estomática e em outros fatores, a taxa de transpiração é proporcional à diferença de umidade absoluta, ou melhor, da pressão de vapor de água, entre a folha e a atmosfera (Aphalo & Jarvis, 1991). O uso da umidade relativa para análise do movimento de água entre a planta e a atmosfera leva a interpretações errôneas, caso não se tome em conta as variações de temperatura do ar, pois uma umidade relativa de 50% a 20°C deve ser aumentada para 75% a 30°C, para manter a mesma umidade absoluta e pressão de vapor de água. Se a umidade relativa for mantida a 50% a 20°C e a 30°C, a taxa de transpiração seria 80% maior a 30°C (Kramer & Boyer, 1995).

A taxa de transpiração é dependente, além da umidade e da temperatura do ar, da quantidade de radiação absorvida pela folha e do fluxo de energia dissipada por condução e convecção, assim como da dimensão da folha e velocidade do vento; e esta taxa vai afetar a temperatura da folha, a qual pode ser menor que a do ar, quando a radiação incidente é baixa, ou maior que a do ar, quando a radiação é alta e, em ambos os casos, a temperatura da folha é reduzida pelo aumento da transpiração (Angelocci, 2002). Por isso, a medida da temperatura da folha, usando o sensoriamento remoto por termometria infravermelha, é usada, quando comparada com a do ar, como indicador da taxa de transpiração e, conseqüentemente, da disponibilidade hídrica do solo, com vista à necessidade de irrigação (Idso et al., 1986). Esse método para avaliar-se a necessidade de irrigação pode ser mais econômico que os outros métodos tradicionais, pois a necessidade de água pela cultura tem grande variabilidade interespecífica e intraespecífica (Doorembos & Pruit, 1977) e, como visto acima, é dependente do ambiente em análise (Doorenbos & Kassan, 1979). Outro uso da medição da temperatura de folha, pela termometria infravermelha, é a indicação de genótipos mais ou menos eficientes no uso de água (Bascur et al., 1985).

Por outro lado, analisando um dossel de plantas, que é o conjunto de plantas na área estudada, além da transpiração, deve-se avaliar a evaporação da água diretamente do solo, no processo simultâneo chamado de evapotranspiração, que pode ser calculada ou medida (Pereira et al., 2002). A partir de medições da evapotranspiração potencial pode-se calcular a evapotranspiração real e necessidade de irrigação para uma cultura, multiplicando o valor potencial por um coeficiente de cultura (kc), que

97

A RELAÇÃO DA PLANTA COM A ÁGUA

deveria ser calculado para a cultivar usada e para o local de plantio, mas pode- se usar um valor de referência aproximado, que é encontrado em tabelas propostas pela FAO, de Doorembos & Pruit (1977) e Doorembos & Kassan (1979). Também a partir da medida da evapotranspiração durante o ciclo da planta em cultivo, pode-se fazer uma previsão da produtividade que poderá ser obtida (Doorembos & Kassan, 1979), como já havia sido proposto por de Wit (1958). O princípio dessa relação (entre evapotranspiração e acúmulo de massa seca na planta) é que, quanto maior for a transpiração da planta, maior será a abertura dos estômatos e, conseqüentemente, a entrada de CO2 na folha para fotossíntese. Mas não se deve esquecer o componente bioquímico da fotossíntese, que pode se saturar e limitar a assimilação do CO2 (Long & Hallgren, 1993) e a acumulação de massa seca (Boyer, 1978).

Os cálculos de evapotranspiração são bastante úteis para a recomendação da necessidade de irrigação, porém o seu uso, sem um manejo adequado e avaliação da qualidade da água usada, tem levado a sérios problemas de salinização e degradação de solos cultivados (Poljakoff-Mayber & Lerner, 1994). O uso de água de irrigação, com teores elevados de sais, leva a deposição destes no solo, pois a água se evapora e o sal fica na superfície do solo. O suprimento de água com baixa salinidade vem diminuindo no mundo e a irrigação vem se tornando menos viável pelo custo da obtenção da água de boa qualidade (Kramer & Boyer, 1995). No Nordeste brasileiro, por exemplo, a água do subsolo é freqüentemente salina. Dependendo do sistema de irrigação usado, também pode haver aumento da salinização (Kruse et al., 1990). Segundo Hillel (1990), existiam, em 1990, 250 milhões de hectares irrigados, representando 18% das terras cultivadas, com uma expansão de 2% ano-1 em países em desenvolvimento, onde 50% dessas áreas irrigadas já estão afetadas pela salinização. Um resumo das propostas de diferentes autores para uso de solos salinizados é apresentado em Pimentel (1998).

4.3 • OS ESTÔMATOS E O CONTROLE DA PERDA DE ÁGUA NA TRANSPIRAÇÃO

O termo “stoma” quer dizer boca em grego e “stomata” ou estômatos é o seu plural. O poro do estômato, chamado ostíolo, ocorre entre duas células, chamadas guarda, que são células especializadas da epiderme, com atividade metabólica distinta das outras, e, abaixo destas, fica a câmara subestomática, onde a água se evapora. As células-guarda podem ter alterada a sua extensibilidade membranar (discutido no final do Capítulo 2) e, conseqüentemente, o seu turgor e volume. O ostíolo se fecha, com a

98

CARLOS PIMENTEL

diminuição do turgor das células-guarda, e se abre, com o aumento do turgor; isto ocorre em função de sinais externos ou internos, que são os fatores ambientais e biológicos, que modulam o crescimento da planta naquele ambiente. Existe uma sintonia entre as células-guarda e as células vizinhas, as quais aumentam seu turgor quando as células-guarda o diminuem e vice-versa, com trocas de metabólitos para manter este processo interativo (Weyers & Meidner, 1990).

Os estômatos podem existir em ambas as faces da folha (anfistomáticas), em dois terços das espécies vegetais, ou somente em uma das superfícies (hipostomástica), principalmente em árvores. Nas plantas anfistomáticas, a freqüência de estômatos varia de 20 a 2000 poros mm-2, mas com a maioria dos valores entre 40 e 350 poros mm-2, com uma maior freqüência na face inferior, exceto em algumas espécies de gramíneas, como o milho. A dimensão dos estômatos varia de 35 a 56 µm de comprimento e de 12 a 19µm de largura, e podem ter a forma de feijões na maioria, mas em gramíneas são mais compridos que largos, com forma, muitas vezes, de halteres (Figura 8) (Weyers & Meidner, 1990). A parede celular do bordo do ostíolo é menos extensível que a externa e pode ser mais espessa, porém o que a faz menos extensível é a sua estrutura micelar, e muitas vezes ela possui uma projeção que se estende sobre os poros, cobrindo-os em parte. A parede celular, sendo mais rígida do lado do ostíolo, faz com que haja abertura deste quando a célula fica túrgida e causa o seu fechamento com a perda do turgor (Mansfield & Mcainsh, 1995).

99

A RELAÇÃO DA PLANTA COM A ÁGUA

Figura 8 • Forma de estômatos em feijão e em halteres

A - Em feijão (Dicotiledôneas) B - Em halteres (Monocotiledôneas)

A plasmalema das células-guarda é bastante elástica, permitindo rápidas variações de área (sua área total pode aumentar ou diminuir 30% em cinco minutos). Em Commelina communis, o volume citoplasmático corresponde a 21% do protoplasma (o qual corresponde a 98% do volume da célula-guarda), onde os cloroplastos (os cloroplastos medem de 4 a 6µm e são muito maiores que as mitocôndrias, que medem em torno de 0,5µm) ocupam 25% e o núcleo 7% do volume citoplasmático; e, apesar de não se ter sido isolado o vacúolo intacto (em células do mesófilo podem ocupar até 90% do volume do protoplasma) das células-guarda, pois há um choque osmótico causando sua ruptura, os isolados de tonoplasto em células-guarda de estômatos fechados, mostram uma área 25% superior à da plasmalema (Weyers & Meidner, 1990).

O movimento de abertura e fechamento dos estômatos e seu controle são essenciais para a regulação das perdas de água pela transpiração, mantendo a máxima taxa de assimilação de CO2 possível para a planta (Boyer, 1978; Farquhar & Sharkey, 1982). Por exemplo, mesmo em um campo irrigado, nas horas mais quentes de um dia de verão e, por conseqüência, com a mais baixa umidade relativa do ar do dia, as plantas devem diminuir a abertura estomática para refrear a transpiração (Tardieu & Simonneau, 1998). Isto ocorre porque, como visto no Capítulo 3, freqüentemente o gradiente entre o solo e a planta é muito menor que o gradiente entre a planta e a atmosfera e, conseqüentemente, o fluxo de água do solo para a planta não poderia atender à demanda potencial de água na parte aérea, pois o fluxo de água da planta para a atmosfera, via estômatos abertos, seria muito maior que o suprimento nas raízes (Lüttge et al., 1996).

Antigamente, achava-se que o turgor das células-guarda e a conseqüente abertura ou fechamento estomático eram controlados unicamente pela interconversão entre amido, que não é osmoticamente ativo, e açúcares solúveis, que são osmoticamente ativos. Na presença de luz, com o consumo de CO2 pela fotossíntese, há aumento do pH, o que resulta na hidrólise do amido em açúcares, aumentando o turgor e abrindo os estômatos. Na falta de luz, com o decréscimo da fotossíntese, o aumento de CO2 causa diminuição do pH e reconversão dos açúcares em amido (Kramer & Boyer, 1995). Hoje se sabe que o amido e a sacarose participam do processo, mas para manter a abertura ou fechamento a longo prazo. Para a resposta rápida, sabe- se que os principais metabólitos envolvidos no movimento dos estômatos são os íons inorgânicos H+, K+ e Cl-, junto com íons orgânicos, principalmente o malato, que, por sua vez, afetam a concentração de sacarose e de amido da célula-guarda e das vizinhas (Mansfield & Mcainsh, 1995; Dietrich et al., 2001; Schroeder et al., 2001). Os estômatos têm sido usados como um

100

CARLOS PIMENTEL

modelo para os estudos sobre as interações dos mecanismos de transdução de sinais na célula, que interagem e funcionam em rede (Schroeder et al., 2001).

O controle do movimento dos estômatos. A percepção do sinal externo para o controle do movimento de

estômatos pode ocorrer diretamente, sem ação hormonal, pela percepção do estímulo por receptores nas células-guarda, no caso da luz (com diferentes sistemas de percepção para a luz azul ou vermelha), das concentrações de CO2 e de água do ar (Schulze, 1986) e da tensão de água no xilema e apoplasto foliar (Netting, 2000), ou através da ação de fitormônios. Quanto às intensidades luminosas para obter-se máxima abertura estomática, a maioria das plantas C3 apresenta saturação luminosa para a resposta dos estômatos às baixas intensidades de 50 µmoles quanta m-2 s-1, enquanto plantas C4 não se saturam na máxima intensidade luminosa do sol, em torno de 1700 µmoles quanta m-2 s-1. A temperatura ideal para máxima abertura se situa entre 32 e 38°C, na maioria das plantas; a concentração de CO2 para máxima abertura se situa abaixo de 300 µmol mol-1 (com o aumento da concentração de CO2 atmosférico ocorre redução da abertura estomática); e quanto à umidade do ar, que depende da temperatura, a diminuição da abertura estomática ocorre em minutos, quando a umidade do ar diminui (Weyers & Meidner, 1990).

A indução do movimento dos estômatos, quando ocorre via um fitormônio, começa pela acoplagem deste a um receptor na plasmalema, que para alguns dos fitormônios já é conhecido, iniciando-se uma série de reações metabólicas e ativação de bombas e canais iônicos, em uma cascata de reações, nas diferentes vias de transdução de sinais, no interior da célula. Essas vias alterarão a concentração de mensageiros intracelulares, também chamados mensageiros secundários, que por sua vez induzirão alterações no conteúdo de metabólitos e da água, que causarão o movimento dos estômatos (Assmann & Zeiger, 1987; Mansfield & Mcainsh, 1995). Em relação ao balanço hídrico no SSPA, além do controle hormonal dos estômatos, a tensão de água no xilema e no apoplasto foliar controla a abertura estomática para evitar o fenômeno de cavitação (Tyree, 1997), sendo essa considerada a principal função do fechamento estomático, segundo alguns autores (Tsuda & Tyree, 2000; Cochard et al., 2002). A tensão de água no mesófilo foliar induz variações no pH, pela alteração das H+-ATPases e do K+-H+ simporte na plasmalema (Netting, 2000), que por sua vez induzirá a passagem do ABA, preexistente nas células do mesófilo foliar, para o apoplasto e para as células-guarda dos estômatos (Popova et al., 2000; Hartung et al., 2002).

101

A RELAÇÃO DA PLANTA COM A ÁGUA

Portanto, este movimento dos estômatos pode ocorrer em resposta a um fator externo, como falta de água no solo, concentração de água ou CO2 na atmosfera, ou interno, como a tensão de água no apoplasto foliar ou a necessidade de produção de fotoassimilados para o crescimento e manutenção de determinados órgãos da planta, como os reprodutivos, entre outros. As alterações metabólicas se iniciam principalmente através da fosforilação de enzimas e outras proteínas, pela ação de cinases, tornando-as ativas, ou através da indução gênica, para iniciar a cascata de eventos (Kramer & Boyer, 1995).

Antes de comentar-se sobre a ação hormonal nos estômatos, deve-se fazer algumas ressalvas. Já é bem conhecida a ação do balanço de fitormônios (pois um fitormônio em geral atua em conjunto com os outros, em uma sintonia fina) no crescimento e na resposta dos vegetais a estímulos externos, como por exemplo a produção de ABA em raízes dessecadas, para induzir fechamento estomático na parte aérea (Davies et al., 1990), em conjunto com as auxinas e citocininas, que induzem a abertura (Mansfield & Mcainsh, 1995). Durante a formação de raízes adventícias de Commelina communis L. há diminuição da produção de ABA e aumento de citocinina nestas raízes, causando assim a abertura estomática, com aumento da fotossíntese e da transpiração, e a excisão destas raízes diminui o conteúdo de ABA e aumenta o de citocininas em folhas, causando fechamento estomático e diminuição da fotossíntese e transpiração (Wang et al., 1994). Contudo, deve-se ter cautela na afirmação de que as respostas aos estímulos são controladas exclusivamente pelos fitormônios. Estes estão envolvidos no controle dos processos responsáveis pela resposta, mas provavelmente agindo em conjunto com outros metabólitos, como os teores de carboidratos nos tecidos (Farrar, 1996), e com a expressão gênica de enzimas e estímulos exógenos e endógenos percebidos diretamente na célula que, em conjunto, produzirão a resposta do vegetal. Além disso, deve-se atentar que muitas vezes pode existir uma baixa correlação entre os níveis celulares de fitormônios e os seus efeitos, pois somente uma fração do seu conteúdo está em uma forma ativa, e grande parte pode estar inativa por causa de ligações químicas com outros compostos (não podendo ser dosados) ou por compartimentalização, dependentes de pH e polarização de membranas, ou mesmo estando fora da planta na rizosfera (Hartung et al., 2002). Além disso, para o estímulo dado por fitormônios, necessita-se de receptores celulares no sítio de ação do fitormônio, que perdem a sensibilidade com a idade do órgão e sob efeito de fatores ambientais, como disponibilidade de água e nutrientes, temperatura e fotoperíodo (Marchner, 1995). Alguns exemplos de receptores celulares para a percepção de um

102

CARLOS PIMENTEL

estímulo externo, já conhecidos, são a enzima histidina cinase (AtHK1) transmembranar, que é um sensor para o estresse osmótico (Knight & Knight, 2001) ou no caso da luz azul, que é percebida diretamente no interior da célula pelas proteínas CRY e NPH1, e talvez também pela zeaxantina (Schroeder et al., 2001), entre outros receptores celulares.

Outrossim, parte da atividade do fitormônio em um órgão pode vir da sua síntese em outro órgão específico, como o ABA produzido nas raízes e em folhas maduras (Hartung et al., 2002) sobre os estômatos na folha, mas uma parte do ABA pode ser proveniente da própria folha ao se concentrar, do restante do apoplasto foliar, na plasmalema das células-guarda (Popova et al., 2000). Outro fator de complicação no estudo dos efeitos hormonais, que foi comentado anteriormente, é que a ação de um fitormônio não é isolada, mas sim em conjunto com os outros fitormônios, sendo que muitas vezes um fitormônio estimula e o outro reprime o processo para que haja uma sintonia fina da resposta, como na interação entre ABA e citocininas (Wang et al., 1994) e entre auxinas e ABA (Mansfield & Mcainsh, 1995). Portanto, deve-se ter em mente que uma resposta da planta é função do balanço de fitormônios e de outros metabólitos, assim como da ação gênica e enzimática (Kramer & Boyer, 1995).

Quanto ao efeito dos fitormônios sobre os estômatos, sabe-se que as auxinas afetam a fotossíntese induzindo a abertura estomática, em uma sintonia fina com outros fitormônios, como o ABA, que é produzido quando há dessecamento do solo, e que induz o fechamento estomático. Por exemplo, sob falta de água, quando há necessidade de uma resposta rápida às variações ambientais de luz, CO2 e UR%, mesmo sob efeito do ABA, as auxinas podem induzir uma certa abertura dos estômatos (Mansfield & Mcainsh, 1995). O efeito para a abertura estomática começa com a acidificação do apoplasto em torno das células-guarda, devido à atividade da bomba de prótons nas células- guarda, a ATPase (H+-ATPase) da plasmalema, promovendo a extrusão de prótons, que, por sua vez, vai ativar os canais de influxo de K+ na célula-guarda, promovendo a abertura dos estômatos (Grabov & Blatt, 1998; Dietrich et al., 2001). A extrusão de prótons é importante para uma série de processos, que afetam o crescimento da planta. Por exemplo, a acidificação da parede celular pela extrusão de prótons rompe as ligações entre as fibrilas de celulose, ou ativa enzimas de degradação de celulose, permitindo assim o deslizamento destas fibrilas, e o conseqüente aumento de volume na célula, quando há uma pressão de turgescência mínima. Portanto, as auxinas ou a toxina fúngica fusicosina (que causa o mesmo efeito) estimulam a extrusão de prótons e, conseqüentemente, a expansão celular (Marschner, 1995; Morris, 1996).

103

A RELAÇÃO DA PLANTA COM A ÁGUA

Já as citocininas induzem aumento da atividade fotossintética, pelo incremento do conteúdo foliar de clorofilas, acelerando o desenvolvimento de cloroplastos ou modulando a atividade de enzimas fotossintéticas, retardando assim a senescência e, provavelmente, interagindo de alguma maneira com a ação de auxinas e de ABA no controle estomático; as citocininas produzidas nas raízes são transportadas junto com o ABA, via xilema, para a parte aérea, onde causa estes efeitos (Wang et al., 1994).

Quanto às giberelinas, os seus efeitos sobre a abertura estomática e atividade fotossintética são pouco conhecidos, só se sabe que elas estimulam a exportação de sacarose da folha, sendo consideradas indutoras de desenvolvimento reprodutivo, e há uma interação entre giberelinas e auxinas estimulando a atividade dos drenos de reserva e o crescimento da planta (Tamas, 1995).

Outros compostos, que estão em estudos como tendo possível ação hormonal, são as poliaminas, o ácido jasmônico e brassinosteróides, que se sabe influenciar a resposta da planta à falta de água (Kramer & Boyer, 1995) assim como o ácido salicílico e espécies ativas de oxigênio (EAO), que também podem estar envolvidos na transdução de sinais para os efeitos e respostas à seca (Marschner, 1995).

A ação dos fitormônios ou do estresse na célula ocorre, como já foi dito, provavelmente através de um receptor membranar ou no protoplasma, conhecido para alguns deles, que induzirá, por sua vez, a transdução do sinal dentro da célula, através de uma série de reações em cascata. As principais vias de transdução de sinais intracelulares, já bem conhecidas, são: os níveis de Ca2+ no citosol e sua associação com a calmodulina (Ca-CAM); a via do inositol-1,4,5-fosfato (IP3), que controla também os níveis de Ca

2+ no citosol, e é produzido pela ação da fosfolipase C e da fosfolipase D nos fosfolipídeos membranares, cujos mRNA são produzidos sob estresses por frio, osmótico e por seca; a via de proteínas G, afetando também a ativação de cinases ativadas por mitogene (“MAPK”) e produção do inositol-1,4,5-fosfato; alterações no pH citosólico e potencial transmembranar, causando o movimento de íons, que por sua vez modularão processos com o de abertura e fechamento estomático; a ação das cinases dependentes de Ca2+ (CDPK) e transportadores membranares; a produção de ácido salicílico e EAO e a ação gênica, através da expressão de fatores de transcrição específico para estresse por seca (DRE, CBF, ZEP, NCED, AAO3 e MCSU, entre outros) (Leckie et al., 1998; Xiong et al. 2002). Essas vias de transdução de sinais intracelulares interagem e afetam umas às outras (Schroeder et al., 2001). Após a percepção e transdução

104

CARLOS PIMENTEL

do sinal, o processo celular de resposta é iniciado em geral pela ativação, via fosforilação, de enzimas, por cinases e/ou pela indução gênica (Stryer, 1995). Um mensageiro intracelular conhecido em animais é a via do AMP cíclico, porém a presença de AMP cíclico em plantas ainda é motivo de controvérsia (Verhey & Lomax, 1993), mas a sua aplicação exógena resulta em abertura estomática, na presença de luz, segundo Leckie et al. (1998). Mais detalhes sobre alguns dos mecanismos de ação e a interação entre estes sinais intracelulares foram revistos em Pimentel (1998), e para as respostas aos estresses por frio, osmótico ou por seca, em Xiong et al. (2002).

O ácido abscísico (ABA) e o controle estomático – Um dos efeitos conhecidos do ABA é sobre o controle estomático em folhas (Davies et al., 1990). O ABA produzido na raiz, que fica tanto na raiz quanto na solução do solo (Hartung et al., 2002), mas também é produzido em folhas maduras, é exportado para as folhas, onde a transpiração é mais intensa, causando fechamento estomático e diminuindo a atividade fotossintética em pouco tempo, talvez pela diminuição da atividade carboxilase e aumento da atividade oxigenase da rubisco. O ABA afeta a abertura estomática, controlando o influxo e efluxo de K+ nas células-guarda, assim como os de Cl- e de ácidos orgânicos na plasmalema e tonoplasto destas células, para o balanço iônico (Müller-Röber et al., 1998). Este processo controlará a entrada ou saída de água nas células-guarda, e o conseqüente movimento estomático (Assmann & Zeiger, 1987). O ABA funciona como um mensageiro (sinal) entre a raiz e a parte aérea, principalmente em condições de dessecamento do solo, para induzir o fechamento estomático e economizar água, antes mesmo de haver variações no Ψa da folha (Davies et al., 1990). Outros estresses como excesso de água e salinidade também induzem a formação de ABA, como mensageiro entre a raiz e a parte aérea. O ABA tem também interação com a produção de etileno, pois, na folha, este último inibe a fotossíntese, provavelmente pela indução do fechamento estomático e aumento do teor de ABA (Mansfield & Mcainsh, 1995; Stoll et al., 2000), e na raiz o etileno inibe o crescimento radicular (Spollen et al., 2000).

Assim, a ação do ABA na planta não é tão simples. Hoje se sabe que mesmo sem haver uma variação da concentração de ABA na folha, pode haver a indução do fechamento estomático pelo ABA, pois, como dito anteriormente, o fitormônio pode estar na forma inativa ou compartimentalizado nas células epidérmicas, por exemplo (Schroeder et al., 2001), além de ser transportado na planta na forma de éster de glicose

105

A RELAÇÃO DA PLANTA COM A ÁGUA

(Hartung et al., 1998, 2002), que não pode ser dosado. Segundo Popova et al. (2000), sob estresse, o ABA preexistente na folha pode se concentrar em volta da célula-guarda dos estômatos, que são considerados alvos para a distribuição do ABA intrafoliar, e a variação do pH apoplástico afeta o efeito do ABA na abertura estomática. O pH do apoplasto, quando os estômatos estão fechados, é próximo da neutralidade e a acidificação do apoplasto induz a abertura estomática. Esta acidificação causa reativação dos canais iônicos das células- guarda e muda a condutividade dos canais de K+ (Hartung et al., 1998; Netting, 2000; Popova et al., 2000).

Por outro lado, a desidratação de raízes causa aumento da concentração de ABA nestas e no xilema, que causa o fechamento estomático nas folhas (Hartung et al., 2002). Além da ação direta do ABA nas células- guarda, a tensão de água no xilema e apoplasto foliar ativa, mecanicamente, canais de Ca+2 para o interior das células que, por sua vez, causam a liberação do ABA estocado nas células da epiderme para o apoplasto (Netting, 2000), para o seu transporte até as células-guarda. Hoje em dia, a desidratação parcial das raízes (gotejamento de um lado da linha de plantio) é considerada uma nova prática de irrigação, que aumenta a eficiência no uso de água em videira, sem afetar a produtividade (Stoll et al., 2000).

Na raiz, o metabolismo do ABA também começa a ser melhor compreendido. Uma das funções da acumulação do ABA na raiz é a restrição da produção de etileno nesta (a produção de etileno no tecido vegetal inibe o seu crescimento), para manter o crescimento radicular, sob desidratação (Spollen et al., 2000). O seu acúmulo na parte aérea pode ter a mesma função, isto é, modular o crescimento da parte aérea (Sharp & LeNoble, 2002). Por outro lado, o ABA acumulado nas raízes pode ter sido sintetizado nas folhas e transportado para estas (Hartung et al., 2002), podendo ser acumulado fora das raízes, na rizosfera, na forma livre ou como éster de glicose, e a sua redistribuição na raiz controla o seu efeito nesta, assim como, sob alta taxa de transpiração, o ABA livre e o conjugado com éster (Hartung et al., 2002) são carreados pelo fluxo de água apoplástico, atravessando a endoderme, sendo transportados para a parte aérea (Freundl et al., 1998, Steudle, 2000). Assim sendo, mais estudos são necessários para a melhor compreensão dos efeitos do ABA, como fitormônio do estresse, no metabolismo vegetal.

O movimento de abertura dos estômatos – Ainda existem dúvidas sobre o mecanismo de abertura estomática, apesar de se conhecer quais os íons

106

CARLOS PIMENTEL

(H+, K+, Cl- e malato) e os carboidratos (sacarose e amido) envolvidos, na regulação osmótica e no turgor das células-guarda. Há também a participação do Ca+2 e do Inositol-TriFosfato (IP3) na indução do fechamento estomático em resposta ao ABA e ao CO2 (Mansfield & Mcainsh, 1995; Schroeder et al., 2001), mas os mecanismos ainda são objeto de debate, sobretudo para a abertura estomática, e em resposta a luz e auxinas (Dietrich et al., 2001).

A abertura estomática é iniciada pela extrusão de H+, através das H+- ATPases membranares, que são ativadas por auxinas, luz azul ou vermelha [os receptores de luz nas células-guarda são autônomos e induzem diretamente a abertura dos estômatos (Schroeder et al., 2001)], causando a hiperpolarização (diminuindo mais ainda o potencial eletroquímico da célula-guarda), o que permitirá o movimento de íons para dentro e para fora da célula. Assim sendo, o transporte de íons é energizado pelo gradiente de potencial eletroquímico entre os dois lados da membrana, promovido pela bomba de H+, dependente de ATP [as H+-ATPases, que gastam energia produzida na fotossíntese ou na respiração da célula (Assmann & Zeiger, 1987)], e é facilitado por canais e bombas iônicas (Grabov & Blatt, 1998).

Este controle do pH citoplasmático e, portanto, do potencial eletroquímico é mediado por um tipo de proteína integral de membranas, as H+-ATPases da plasmalema (“PMHA”), que também existem no tonoplasto e no cloroplasto. Essa proteína usa energia química do ATP para transferir prótons para fora do citoplasma, e é também chamada de bomba de H+, requerendo uma interação com os fosfolipídeos membranares para a sua ativação. Portanto, o transporte de prótons é dependente dos fosfolipídeos membranares, que são alterados pela ação das fosfolipases C e D, que modulam então a atividade da H+-ATPase (Kasamo & Sakakibara, 1995; Xiong et al., 2002). Outrossim, os valores do potencial eletroquímico celular (EM) são bastante variáveis, de -40mV a -220mV. Um aumento na diferença de potencial eletroquímico entre o apoplasto e o citoplasma, ou hiperpolarização, é sinônimo de uma diminuição de EM (potencial eletroquímico transmembranar mais negativo, atingindo os valores de -100 a -220mV), e uma diminuição da diferença de potencial eletroquímico, ou despolarização, é sinônimo de um aumento de EM (potencial eletroquímico transmembranar menos negativo, passando, por exemplo, de -100 a -220mV, para -50 a -90mV). Tendo em vista que os canais iônicos nas membranas celulares são sensíveis à voltagem e/ou são Ca2+-dependentes, a polarização das membranas irá ativar ou desativar estes canais, permitindo o transporte de íons para dentro ou para fora da célula (Jacoby, 1994).

107

A RELAÇÃO DA PLANTA COM A ÁGUA

Para ocorrer a abertura estomática, essa hiperpolarização, causada pela atividade das H+-ATPases [com acidificação do apoplasto, que pode ser responsável pela ativação dos canais de K+ para o citoplasma (Dietrich et al., 2001)], por sua vez, induzirá um influxo de K+, através dos canais de K+, ocorrendo em seguida um influxo de Cl-, via H+/anion simporte ou anion/OH- antiporte, na plasmalema (Schroeder et al., 2001). A concentração de K+ apoplástico, durante a abertura estomática, decresce de 15 mM, no escuro, para 3 mM, em presença de luz, e a concentração do K+ citoplasmático aumenta de 100 para 400 mM. Já o potencial de Nernst para o K+ varia, na abertura estomática, de -60 mV para -130 mV, podendo se equilibrar a valores em torno de -112 mV (Dietrich et al., 2001).

Em paralelo, há um rápido acúmulo de malato no citoplasma (contribuindo, junto com o K+ e o Cl-, para aumentar a pressão osmótica no citoplasma das células-guarda), assim como de sacarose, que é mais lentamente acumulada, sendo ambos osmoticamente ativos. O malato pode ser produzido diretamente na célula-guarda, pela Fosfoenol Piruvato carboxilase, que é inexistente no restante do mesófilo de Vicia faba, por exemplo (Muller-Röber et al., 1998), uma planta C3, mas o malato pode ser oriundo também da respiração, com a hidrólise do amido (Assmann & Zeiger, 1987). O acúmulo de malato e de Cl- no citoplasma equilibra o acúmulo de K+ no citoplasma da célula, como resposta rápida ou inicial do dia, por exemplo, com posterior acúmulo de sacarose ao longo do dia. O conteúdo de K+ nas células-guarda decresce durante o decorrer do dia e deixa de se correlacionar com o grau de abertura estomática, enquanto o conteúdo de sacarose aumenta gradativamente e, ao meio dia e à tarde, o conteúdo de sacarose passa a correlacionar-se melhor com o grau de abertura estomática, segundo Talbot & Zeiger (1998). Todos esses metabólitos são osmoticamente ativos e, com o acúmulo desses dentro da célula-guarda, há também entrada de água, das células vizinhas, aumentando o seu turgor e abrindo os estômatos (Weyers & Meidner, 1990; Kramer & Boyer, 1995).

Assim, a polarização da plasmalema, via atividade das H+-ATPases, tem uma função primordial para criar o gradiente de cargas necessário para a entrada do K+ no citoplasma, por canais, com gasto indireto de energia para promover a entrada do K+, via esta polarização de membrana. Sabe-se, por exemplo, que a luz azul ativa a H+-ATPase, via a fosforilação do C terminal, e pode ser percebida diretamente no interior da célula pelas proteínas CRY e NPH1 e talvez também pela zeaxantina (Schroeder et al., 2001), mas ainda há dúvidas sobre a participação destes compostos na percepção do sinal externo

108

CARLOS PIMENTEL

(Dietrich et al., 2001). A acidificação do apoplasto, causada pela hiperpolarização da membrana através da H+-ATPase, aumenta a atividade dos canais de K+ para o interior da célula, enquanto o aumento do conteúdo citoplasmático de IP3 e Ca

+2 pode inibir estes canais. As fosfolipases C e D estariam envolvidas nestas respostas causando liberação do IP3 da membrana e/ou ativando a H+-ATPase (Xiong et al., 2002).

Assim, o principal soluto que mantém a abertura estomática no início do dia ou em caso de uma resposta rápida, devido a fatores internos ou externos, é o K+, mas, durante o resto do dia, o conteúdo de sacarose vai aumentando e esta passa a ser o soluto principal, enquanto o conteúdo de K+

da célula-guarda diminui (Schroeder et al., 2001).

O movimento de fechamento dos estômatos – O fechamento estomático requer efluxo de íons e, conseqüentemente, de água da célula, e o efeito do ABA nesse processo, que já é bastante estudado, serve como modelo. O ABA, produzido sob falta de água, inibe a abertura estomática, provavelmente via aumento do conteúdo citoplasmático de Ca+2 e conseqüente inibição das H+-ATPases, com acidificação do citoplasma, e via inibição das fosfatases PP1 e PP2A, que ativariam os canais de K+ para o interior da célula, e assim causa o fechamento dos estômatos (Grabov & Blatt, 1998). Como o ABA, a obscuridade, o aumento de CO2 atmosférico ou oriundo da respiração no mesófilo foliar, assim como elicitores produzidos por patógenos, as EAO, como mecanismo de defesa da planta para reduzir o acesso do patógeno ao interior da folha, e altas concentrações dos poluentes atmosféricos O3 e SO2 também causam o fechamento estomático (Dietrich et al., 2001; Schroeder et al., 2001).

O ABA induz aumento do conteúdo de Ca+2 no citosol da célula- guarda (mas parece haver uma via de ação do ABA que é Ca+2 independente), que é oriundo do apoplasto ou de organelas intracelulares, como o retículo endoplasmático e o vacúolo (Leckie et al., 1998). A concentração de Ca2+

máxima, no citosol, é de 100 a 200 nM para não formar fosfato de cálcio insolúvel na célula, mas existe uma alta concentração de Ca2+ externo à célula, estocado na parede celular, que pode ser transportado para dentro da célula, iniciando o processo fisiológico. Além do Ca2+ apoplástico, há também aquele estocado no retículo endoplasmático e no vacúolo, que são exportados para o citoplasma (Bethke et al., 1995).

O aumento do Ca+2 citoplasmático, por sua vez, inibe a bomba de prótons (as H+-ATPases) e os canais de influxo de K+, e ativa os dois tipos de canais de efluxo de anions (principalmente o malato e o Cl-) da célula, o lento

109

A RELAÇÃO DA PLANTA COM A ÁGUA

e sustentável (S-tipo) e o rápido e transiente (R-tipo), e, conseqüentemente, causa despolarização da célula [como para a abertura, o fechamento estomático também gasta energia produzida na fotossíntese ou respiração da célula-guarda (Assmann & Zeiger, 1987; Kramer & Boyer, 1995)]. A despolarização, por sua vez, ativa os canais de efluxo de K+ da célula, e, portanto, haverá um efluxo prolongado de K+ e de anions, que contribuem para a perda de turgor da célula-guarda e o conseqüente fechamento estomático. Esses íons que são exportados da célula, também podem vir do vacúolo, onde são estocados, para o citosol, via canais de anions e de K+ vacuolares (Mansfield & Mcainsh, 1995).

O aumento de CO2 atmosférico e da respiração mitocondrial no escuro, assim como a produção de EAO, também causa o fechamento estomático, na mesma cascata de reações causadas pelo ABA. O receptor celular para o CO2 parece ser a diminuição do conteúdo de zeaxantina (Schroeder et al., 2001), que é produzida a partir da viloxantina, retirando elétrons dos fotossistemas (e que se transforma novamente em violoxantina durante a noite, dissipando esses elétrons), como mecanismo de defesa da fotoinibição ocorrida durante o dia (von Caemmerer, 2000).

Função do Ca+2 tanto no fechamento como na abertura dos estômatos – Além de estar envolvido na cascata de reações que causam a indução do fechamento estomático causado pelo ABA (citado acima), o Ca+2

pode estar também envolvido na cascata de reações causadas por um estímulo para abertura dos estômatos, como no caso da auxina e do efeito da luz azul (Leckie et al., 1998). O aumento do conteúdo de Ca+2 citoplasmático, associado com a calmodulina, pode desencadear uma outra cascata de reações, ativando uma cinase específica, dependente de Ca+2 (CDPK), que por sua vez ativa canais vacuolares de Cl- e de malato para o citoplasma.

Como um simples mensageiro secundário, como o Ca+2, pode estar envolvido em respostas opostas, como a abertura ou o fechamento estomático, é ainda desconhecido, mas estes diferentes efeitos do Ca+2 podem ser devidos aos efeitos dos elicitores nos diferentes canais de Ca+2 e sistemas regulatórios do seu conteúdo. O ABA atua, com a ativação gênica das fosfolipases C e D, causando aumento da produção de EAO (que podem ser consideradas como mensageiros secundários para a resposta ao ABA), induzindo mudanças na polarização da plasmalema e conseqüente influxo de Ca+2 do apoplasto ou do vacúolo (Dietrich et al., 2001), iniciando assim a cascata de reações para o fechamento estomático. Já a auxina e a luz também podem induzir o aumento do conteúdo de Ca+2

citoplasmático, oriundo de organelas intracelulares, causando a abertura

110

CARLOS PIMENTEL

estomática. O estímulo para o fechamento estomático faz o conteúdo de Ca+2

citoplasmático oscilar, ao invés de atingir um “plateau” e se manter, e esta oscilação é necessária para o fechamento em longo prazo (Schroeder et al., 2001).

Não é surpresa que as vias de transdução de sinais intercelulares interajam, mesmo para simples elicitores como o ABA e auxinas, que induzem a resposta, seja por uma via dependente de Ca+2 e da polarização de membranas, seja por indução gênica, e ambas são dependentes da fosforilação de proteínas. Portanto, tanto o fechamento estomático, induzido pelo ABA, quanto a abertura, induzida pelas auxinas, podem causar um aumento do conteúdo de Ca+2 citoplasmático, e causarão estas diferentes respostas por sistemas de transdução de sinais distintos, mas sensíveis ao Ca+2 (Grabov & Blatt, 1998). A ativação, induzida pelo Ca+2, de um fator de transcrição particular pode ser especificada pela magnitude e cinética do aumento da concentração do Ca+2 no citoplasma, o que sugere que na célula as informações específicas na acumulação do Ca+2 podem ser decodificadas, relacionando-as a um estímulo específico (Knight & Knight, 2001).

Isso mostra que o movimento dos estômatos e os seus sistemas de transdução de sinais intracelulares são extremamente complexos e, durante o processo de fechamento ou de abertura dos estômatos, o processo inverso pode e deve ocorrer a qualquer momento, em função das variações do ambiente, numa sintonia fina, para implementar a eficiência no uso de água, isto é, permitir a máxima assimilação fotossintética de CO2 com a mínima perda de água possível. Um bom exemplo disso é a interação entre o efeito do ABA e da auxina: quando uma planta está sujeita à desidratação, ocorre o fechamento estomático induzido pelo ABA, mas, nos períodos do dia com baixo DPV (nas primeiras horas de luz), as auxinas podem induzir uma certa abertura estomática, para realizar a assimilação do CO2, quando as perdas de água para a atmosfera são baixas (Mansfield & Mcainsh, 1995).

4.4 • REGULAÇÃO DO MOVIMENTO DOS ESTÔMATOS POR FATORES INTERNOS E EXTERNOS E SEU CUSTO ENERGÉTICO

Como foi visto anteriormente, os estômatos são bastante sensíveis às variações do ambiente, como a intensidade e qualidade (com diferentes vias de transdução para a luz azul ou vermelha) da luz, concentração de CO2, umidade do ar (sendo a resposta dos estômatos mais relacionada ao déficit de pressão de vapor do ar, que aumenta a transpiração), temperaturas ambiente (pois estas afetam o déficit de pressão de vapor), poluentes (como SO2, O3 e

111

A RELAÇÃO DA PLANTA COM A ÁGUA

fluoretos), ventos e nutrição mineral (a deficiência de N, P e K reduz a sensibilidade dos estômatos de diversas espécies), ou mesmo o ataque de patógenos, pois as suas toxinas, como é o caso do conhecido efeito da fusicosina, parecem inibir os canais de K+ (Schroeder et al., 2001). Em relação à interação da abertura estomática com patógenos, Lee et al. (1999) demonstraram que, em tomate e Commelina communis, elicitores produzidos pelas plantas contra os patógenos, como o peróxido de hidrogênio, também induzem fechamento estomático, o que reduz o acesso do patógeno ao interior da folha. Pimentel & Perez (1999) mostraram que as cultivares de feijão A 222, A 285 e A 320, todas tolerantes a antracnose, apresentaram mais rápida resposta de fechamento estomático que outras cultivares mais sensíveis a este fungo quando submetidas à seca, podendo haver uma relação entre os mecanismos de transdução de sinais para o fechamento dos estômatos e de tolerância à antracnose destas cultivares.

Os estômatos também respondem a fatores internos com a concentração de CO2 na folha, status hídrico e energético da folha e reguladores de crescimento, como os fitormônios, mas também ao conteúdo de aminoácidos e íons na folha. A energia gasta nos movimentos estomáticos é oriunda da fotossíntese e da respiração mitocondrial, pois todos os processos induzidos por elicitores internos ou externos à planta dependem, direta ou indiretamente, de energia para a transdução do sinal intracelularmente (Kramer & Boyer, 1995). Assmann & Zeiger (1987) calculam um gasto aproximado de 1,51 a 4,04 pmol de ATP na célula-guarda, para promover a hiperpolarização e acumulação de K+, Cl- e malato na abertura estomática (para 10mm de abertura do ostíolo) em três horas. A fosforilação oxidativa na respiração mitocondrial pode produzir, na célula-guarda, 2,1 pmol de ATP por hora (em três horas, para a abertura citada, somente a fosforilação oxidativa pode produzir 1,4 vezes a quantidade de ATP requerida para a abertura) e a fotofosforilação nos cloroplastos da célula-guarda pode produzir 2,7 pmol de ATP por hora, também mais que suficiente, por si só, para suprir a energia requerida para a abertura.

Contudo, muitas vezes os estômatos não respondem como esperado, como é o caso do processo chamado de heterogeneidade (patchness) dos estômatos ou uma variação cíclica de sua abertura e fechamento (Kramer & Boyer, 1995). A heterogeneidade, ou “patchness”, ocorre quando os estômatos de diferentes partes da folha, na mesma ou entre as duas faces da folha, se comportam de maneira diferente, uns abertos e outros fechados, o que pode ser atribuído às diferenças nas concentrações de ABA na folha ou à diferente

112

CARLOS PIMENTEL

sensibilidade dos estômatos de diferentes partes da folha. Estes efeitos são mais sentidos em estudos de plantas em potes, no laboratório ou em casa de vegetação, onde os estômatos são mais sensíveis aos fatores internos e externos e se fecham a valores de Ψa da folha superiores aos valores observados em campo, onde o fenômeno de heterogeneidade é menos freqüente (Kramer & Boyer, 1995). Esta heterogeneidade poderia causar erros de medições de trocas gasosas de CO2, quando estas são feitas somente em uma parte da folha. Contudo, Cheeseman (1991) deixa claro que a concentração de CO2 nos espaços intercelulares (Ci) se iguala em toda a folha, mesmo com esta variação da abertura estomática, o que não afeta a assimilação de CO2 pela folha inteira.

A oscilação cíclica dos estômatos tem uma duração de 15 a 120 minutos, e é causada por um choque brusco de luz, temperatura ou falta de água, em plantas lenhosas, como em Citrus (Figura 9), que sofrem uma diminuição do conteúdo em água na folha, quando os estômatos se abrem

113

A RELAÇÃO DA PLANTA COM A ÁGUA

Figura 9 • Oscilação da Fotossíntese em função gs em Citrus (A: taxa de assimilação de CO2; gs: condutância estomática; Ci: concentração intercelular de CO2; IWUE: eficiência intrínseca de uso de água [A/gs])

IW UE

(µ mo

l C O 2

mo l-1

H 2 O)

Tempo (min.)

A (µ

mo l C

O 2 m-

2 s-1

) C i

(µ mo

l m ol-

1 ) g s

(m ol

m- 2

s-1 )

em uma atmosfera seca, o que causa aumento da transpiração, mas sem aumento da fotossíntese (Kramer & Boyer, 1995). Isto porque a assimilação de CO2 máxima dessas plantas só é atingida após mais de uma hora sob condições ótimas, devido à baixa condutância mesofílica (gm) para o CO2 nessas espécies. Após um momento de máxima abertura estomática, ocorre uma indução de fechamento para implementar a eficiência no uso de água, e assim começa a oscilação da abertura estomática, até atingir-se um equilíbrio naquelas condições ambientais (Weiss, 1998).

4.5 • A EFICIÊNCIA NO USO DE ÁGUA O conteúdo de água na planta é o resultado do balanço das taxas de

absorção e de perda de água (transpiração) (Maximov, 1929). O primeiro fator está fora de controle instantâneo, sendo dependente do sistema radicular da planta e de características físicas e do suprimento hídrico do solo. O segundo fator, controle da transpiração, pode ser feito em um tempo de 102 a 104

segundos, e em maior ou menor escala, dependendo do vegetal (Pugnaire et al., 1994). A transpiração é proporcional ao déficit de pressão de vapor de água na atmosfera, e o seu controle é feito pelo fechamento estomático, que é o único processo no sistema solo-planta-atmosfera que possui essa resposta instantânea. Porém, como tal controle está diretamente associado ao suprimento de CO2 à folha, a condutância estomática deve variar ao longo do tempo, de forma a haver um mínimo de perdas de água para uma máxima assimilação de CO2 (Kramer & Boyer, 1995).

Portanto, com a abertura estomática para a aquisição de CO2, H2O é inevitavelmente perdida. As plantas CAM e C4, de uma forma geral, em condições de suprimento de água adequado, apresentam maior eficiência no uso de água [EUA, que é igual à taxa de assimilação de CO2/taxa de perdas de H2O, ou agronomicamente, à massa seca de planta produzida/massa de água consumida pela irrigação e chuvas (Kramer & Boyer, 1995)] do que as C3, pois podem ter os estômatos mais fechados, mantendo sua assimilação de CO2 e perdendo menos água (Magalhães, 1979). De uma maneira geral, as plantas C3 têm uma EUA variando de 1 a 3g de CO2 fixado kg

-1 de H2O transpirada; nas C4 essa varia de 2 a 5 e nas CAM de 10 a 40 (Nobel, 1999). Isso ocorre porque as plantas C4 apresentam uma condutância mesofílica superior à das C3 devido à maior taxa de carboxilação, maior afinidade pelo substrato e ausência de fotorrespiração (Ludlow, 1976; Furbank & Taylor, 1995). Com essa maior condutância mesofílica, as plantas C4 podem ter menor condutância estomática, economizando água. Já as plantas CAM, mantendo

114

CARLOS PIMENTEL

os estômatos abertos à noite, quando a transpiração poderia ser mínima, e fechados durante o dia, quando a transpiração é máxima, terão maior economia de água (Nobel, 1999). A tolerância à salinidade também é uma característica comum entre as plantas C4, o que leva essas plantas a sobreviverem em ambientes mais secos e salinos (Hall & Rao, 1994).

Entretanto, estudos comparativos em campo com trigo (C3) e milho (C4) mostraram que a eficiência no uso de água na cultura dessas plantas é semelhante, pois entram em jogo outros fatores fisiológicos, como o maior ajustamento osmótico, e outros mecanismos de adaptação à seca, mais desenvolvidos no trigo. Na cultura do milho, a assimilação fotossintética é menor, assim como o seu rendimento quântico, pois o seu dossel de plantas mais esparso absorve menos radiação fotossinteticamente ativa do que o dossel mais fechado do trigo (Baldocchi, 1994).

Deve-se ressaltar também que existem muitas plantas C3 de regiões de clima árido, com grande controle estomático e conseqüente alta EUA. Além de existir uma variabilidade de EUA entre as espécies, isto ocorre também dentro da espécie, e pode ser uma característica fisiológica associada a outras, como o desenvolvimento do sistema radicular e a morfologia da parte aérea, a serem usadas no melhoramento vegetal tropical. A maior EUA das plantas não garante por si só maior adaptação à seca (Osmond et al, 1982). A EUA pode ser medida com um analisador de gases infra-vermelho, que mede as trocas gasosas de CO2 e de H2O. Um outro método mais sofisticado é pela discriminação isotópica do 13CO2

12CO2 -1 nos tecidos vegetais. Apesar da

maior parte do CO2 da atmosfera ser 12CO2, existe uma pequena quantidade

de 13CO2. Como o 12CO2 é mais leve que o

13CO2, ele se difunde para o interior da folha mais rapidamente, e a Rubisco fixa o 12CO2 mais rapidamente (a FosfoEnol Piruvato Carboxilase fixa mais o 13CO2 que a Rubisco). Assim a célula C3 acumula mais

12CO2 que 13CO2 e o

13CO2 que não é usado, restante nos espaços intercelulares, difunde-se de volta para o ar, em função do grau de abertura estomática, sendo proporcional, esta difusão de volta para a atmosfera, à transpiração (Kramer & Boyer, 1995). Assim a fixação do 12CO2 (proporcional à taxa de assimilação de CO2) em relação ao 13CO2 (proporcional à taxa de perdas de H2O, pela transpiração) nos tecidos da planta se correlaciona com a eficiência no uso de água, e pode ser usado para discriminar genótipos mais eficientes no uso de água (Farquhar & Sharkey, 1982; Ehleringer et al., 1991).

White et al. (1990), usando a discriminação isotópica 13CO2. 12CO2

-1, demonstram que existe uma estreita correlação entre a variação na

115

A RELAÇÃO DA PLANTA COM A ÁGUA

taxa de assimilação de CO2 e a densidade do sistema radicular do feijoeiro, na resposta à falta de água. Já Osmond et al. (1980) propõem que a seleção de plantas tolerantes à seca, principalmente em plantas C3 sensíveis à falta de água, deve buscar plantas que mantenham a atividade fotossintética alta, com baixa condutância estomática, para reduzir as perdas de água por transpiração (eficiência intrínseca no uso de água: EIUA = atividade fotossintética/ condutância estomática). A EIUA, quando avaliada no estádio de pré-floração do feijoeiro, serviu para discriminar os genótipos mais eficientes (Pimentel et al, 1999b).

A absorção contínua de água é essencial ao crescimento e desenvolvimento vegetal, pois a maioria das plantas, em clima tropical, chega a perder mais do que seu próprio peso em água, por dia, em certas condições. Somente algumas plantas xeromórficas, como os cactus, com baixa transpiração e alta capacidade de estocagem de água, podem sobreviver sem imediata reposição da água perdida (Osmond et al., 1982). Portanto, a absorção e uso de água têm uma importância capital, principalmente em clima tropical.

Por isto, as avaliações do sistema radicular e de sua eficiência na absorção devem ser feitas e poderão trazer ganhos de produtividade em cultivo de sequeiro. A eficiência do sistema radicular para absorver água e nutrientes depende de sua profundidade, volume, densidade, profusão de pêlos radiculares, longevidade e outros atributos, como a condutividade hidráulica da planta. Por exemplo, o arroz de sequeiro tem um sistema radicular maior que o arroz irrigado e o crescimento radicular em detrimento da parte aérea é desejável, sob cultivo de sequeiro. Além desses atributos morfológicos, a eficiência dos sistemas de absorção, de assimilação e de distribuição dos nutrientes pela planta também deve ser buscada pelo melhoramento. A capacidade do vegetal em redistribuir estes nutrientes, por hidrólise de macromoléculas em tecidos mais velhos, para suprir as necessidades de órgãos jovens e, sobretudo, do órgão a ser colhido, é determinante também para a agricultura de baixo custo tecnológico em clima tropical (Duncan & Baligar, 1991). Vale ressaltar que a profusão de ramificações e de pêlos radiculares do sistema radicular aumenta a eficiência de captação de água (McCully, 1995), pois quanto mais fino for o sistema radicular, maior a Lp da raiz (Rieger & Litvin, 1999).

Além dos fatores ambientais discutidos aqui, deve-se salientar que o desenvolvimento do sistema radicular é extremamente plástico, dependendo das características do solo onde a planta se desenvolve, como a resistência à penetração, aeração, pH baixo e excesso de elementos tóxicos, como o Al3+, assim

116

CARLOS PIMENTEL

como de substâncias tóxicas produzidas por plantas competidoras (alelopatia, produzindo ácidos cumárico e ferúlico) (Kramer & Boyer, 1995). Deve-se salientar que, por esta plasticidade do desenvolvimento do sistema radicular, as raízes desenvolvidas no campo têm características bastante diferentes das crescidas em potes (McCully, 1995) e, por isto, cuidados na interpretação dos resultados obtidos em pote devem ser tomados (Bruce et al., 2002).

A eficiência no uso de água é de grande importância para a sobrevivência em condições de baixa disponibilidade hídrica e, segundo Passioura (1986), o rendimento de uma cultura é proporcional ao volume de água transpirada durante o ciclo multiplicado pela eficiência no uso de água e pelo índice de colheita. Portanto, este é uma variável indicadora de adaptação à falta de água. Em função da evapotranspiração local da cultura, por uma equação de 1° grau podemos calcular a produtividade daquela cultura, o que já é feito há muito tempo em Israel (Arnon, 1975). Segundo de Wit (1958), a produção de massa seca de uma cultura, em função da evapotranspiração, é calculada pela equação:

P = m T E-1

onde m é um coeficiente de proporcionalidade específico para a cultura (0,0252, 0,0139 e 0,00662 mm dia-1 para o sorgo, trigo e alfafa, respectivamente); T é a transpiração (em kg vaso-1) e E é a média diária da evaporação, no tanque pan (em mm dia-1), durante o ciclo da planta (que é função do local da cultura (Doorembos,& Pruit, 1977; Doorembos, & Pruit, 1977).

Portanto, a determinação da evapotranspiração e do balanço hídrico para as regiões produtoras é primordial para que, baseado nestes dados, se faça o zoneamento agrícola e a previsão da produtividade para a cultura em cada região, como já foi feito para o estado de São Paulo (Camargo, 1962).

117

A RELAÇÃO DA PLANTA COM A ÁGUA

118

CARLOS PIMENTEL

Respostas das Plantas à Seca

Capítulo 5

5.1 • INTRODUÇÃO

Ainda lembrando os pesquisadores do início do século XX, citados no Capítulo anterior, pode-se destacar também a preocupação destes com o efeito da disponibilidade de água no crescimento das plantas e nas respostas destas ao déficit hídrico, como Pfeffer e Maximov:

A respeito da necessidade de manter uma pressão de turgescência positiva, para que haja manutenção do crescimento Pfeffer (1912) afirma que: “A diminuição da turgescência causa uma diferença de potencial que leva ao movimento de água em direção às células e tecidos mais secos.” Sobre a interação entre o módulo de elasticidade de parede e do potencial osmótico celular, para manter a turgescência, ele afirma que: “A pressão de turgescência depende tanto da elasticidade e espessura da membrana celular quanto da pressão osmótica da célula.” Sobre o ajuste osmótico, ele cita: “Com a decomposição hidrolítica do amido insolúvel, que é realizada por uma enzima, se formam açúcares solúveis, que são osmoticamente ativos.”

Maximov (1929), considerado o primeiro autor a escrever um livro sobre as respostas das plantas à seca sobre a manutenção do turgor, diz que: “Com a progressiva perda de água e a parada ou deficiência de suprimento, as células do parênquima da folha perdem seu turgor.” Quanto ao efeito do controle estomático o autor afirma que: “Uma das primeiras conseqüências da murcha, o fechamento estomático, causa uma perda considerável da atividade assimilatória da planta, a absorção de dióxido de carbono pela folha.” Sobre a diferença de respostas de plantas à falta d’água, ele cita: “plantas e órgãos diferentes respondem de forma distinta à deficiência de água...”, e “…sementes, criptógamas, como liquens e musgos, e algas terrestres, realmente se submetem à dessecação, sendo reduzidos a uma condição de ar- seco.” Quanto a seus estudos com plantas mesófitas e xerófitas Maximov afirma que: “A necessidade de se reduzir a transpiração é vista como uma das principais peculiaridades fisiológicas das xerófitas, que vivem sob condições de extrema seca. Assim, as formas de cactus, com sua insignificante superfície de transpiração e grande quantidade de água acumulada, podem sobreviver por vários meses ou anos, nessas condições.”

Na década de 1970, principalmente, foram feitas muitas descobertas importantes, que geraram avanços na compreensão da relação da planta com a água. Por isso, para o estudo desta relação, é sempre aconselhável a leitura de revisões e livros publicados na década de 1970 e início da de 1980, antes de se dedicar às publicações mais atuais.

119

A RELAÇÃO DA PLANTA COM A ÁGUA

No Brasil, dentre outros trabalhos, os estudos de Paulo Alvim e de Coaraci Franco e Antônio Celso Magalhães, ainda na década de 1950 e 1960 (Alvim 1965; Alvim & Havis, 1954; Franco & Magalhães, 1965), são citados por Kramer & Boyer (1995). Alguns estudos de pesquisadores brasileiros sobre a relação da planta com a água foram realizados anteriormente e desenvolvidos em seguida por outros pesquisadores, como, por exemplo, os estudos de Ferri (1944 e 1955), de Ferri & Labouriau (1952), e de Labouriau et al. (1964), em São Paulo, e de Alvim (1946), Rena & Splittstoesser (1974), Maestri & Barros (1977) e Oliva et al. (1984), em Minas Gerais, entre outros.

Neste capítulo, serão comentadas algumas das respostas fisiológicas das plantas à deficiência hídrica de interesse para a compreensão do comportamento, principalmente do desenvolvimento e acúmulo de massa seca, das plantas, nestas condições mas, também, para indicar um conjunto de variáveis fisiológicas que possam ser de uso no melhoramento vegetal para a adaptação à seca, a ser discutido no capítulo seguinte. Anteriormente, se usava a terminologia “efeitos da seca”, em vez de “respostas à seca”, mas é difícil determinar-se o que é um efeito ou uma conseqüência do efeito. Por exemplo, a baixa disponibilidade de água causa diminuição do conteúdo em água na célula, o que é um efeito, e esta menor concentração de água na célula causa variação na atividade de enzimas, o que é uma resposta, e que pode ser favorável ou não ao processo evolutivo de adaptação à seca. Portanto, em relação a um determinado processo analisado em plantas dessecadas, é difícil afirmar se este é uma causa ou conseqüência, isto é, um efeito do estresse ou é decorrente desse efeito.

Dentre as muitas respostas dos vegetais à deficiência hídrica, existem umas nocivas às plantas (como o desbalanço metabólico na planta com aumento da produção de Espécies Ativas de Oxigênio–EAO, segundo Noctor et al., 2002), e que podem levar à morte da planta, e outras respostas que são favoráveis (como o aumento da síntese de compostos antioxidantes ácido ascórbico, glutationa, carotenos etc, para a adaptação da planta a estas condições Yordanov, 2000). O estudo destas respostas favoráveis é importante para o aumento da produção agrícola, mesmo nas áreas de máxima produtividade nos EUA (Bruce et al., 2002), mas sobretudo em áreas marginais para a agricultura (Payne, 2000; Winkel et al., 2001). As mudanças climáticas globais (antropogênicas: causadas pelo Homem) que estão ocorrendo causarão também aumento da temperatura do ar e secas mais

120

CARLOS PIMENTEL

freqüentes, conforme discutido por Drake et al. (1997) e Sarmiento & Wofsy (1999). Essas respostas favoráveis para a sobrevivência do vegetal sob desidratação, encaradas como mecanismos de adaptação à seca, serão discutidas no próximo capítulo.

Outra ressalva a ser feita é para os termos “adaptação” e “aclimatação”. A aclimatação é considerada uma resposta a uma mudança brusca no ambiente, que não é genética, como por exemplo, quando uma planta, que se desenvolveu em uma atmosfera com a concentração atual de CO2 (350 µl l

-1) ou sob temperaturas médias (p. ex.: 25°C), é submetida a uma atmosfera com o dobro de CO2 (700 µl l

-1) ou sob altas temperaturas (p. ex.: acima de 35°C), por um curto período de tempo. Neste caso, ela pode apresentar uma mudança de comportamento, que é uma aclimatação (sem controle genético), enquanto a adaptação é uma resposta ao ambiente, mas de caráter genético, quando o vegetal se desenvolve nas condições de estudo (alta concentração de CO2 atmosférico ou altas temperaturas), contribuindo para a evolução vegetal naquele ambiente (Prof. Long, comunicação pessoal), como por exemplo o ajuste osmótico no sorgo, uma planta que evoluiu em ambiente semi-árido (Harlan, 1992), e que é um caráter herdável (Bolaños & Edmeades, 1991), mas considerado por Guei & Wasson (1993) como de baixa herdabilidade genética.

5.2 • A FALTA D’ÁGUA E A PRODUÇÃO AGRÍCOLA

A população mundial vem aumentando enormemente, principalmente nos países mais pobres e vulneráveis do terceiro mundo, onde a produção de alimentos não é suficiente para manter esta população crescente, por serem áreas marginais para a agricultura, com deficiência de água e de nutrientes (Rockström & Falkenmark, 2000).

A disponibilidade hídrica é considerada o fator climático de maior efeito sobre a produtividade agrícola, sendo o fator que rege a distribuição das espécies, nas diferentes zonas climáticas do globo (Turner e Jones, 1980; Kramer & Boyer, 1995). Na zona tropical (América do Sul, África, Ásia), onde vivemos, a incidência de baixos índices de precipitação é muito maior que nas outras zonas, apesar de existirem regiões secas nestas outras. Segundo Singh (1995), mais de 60% do cultivo de feijão comum em países da América Latina, África e Ásia sofrem redução na produção devido à falta d’água, pois o requerimento hídrico da planta, durante o seu ciclo, não é satisfeito.

121

A RELAÇÃO DA PLANTA COM A ÁGUA

122

CARLOS PIMENTEL

Existe uma variabilidade muito grande no grau de tolerância à falta d’água entre espécies (que pode ser visto pelo valor do Ψa letal para as plantas, apresentados na Tabela 2) e, mesmo dentro de uma espécie, entre variedades (Ludlow, 1976). Além disto, o estádio de desenvolvimento da planta em que ocorre o estresse também é crítico para a produtividade agrícola (Kramer & Boyer, 1995). Na cultura do milho, por exemplo, as duas semanas que antecedem e que se seguem à formação dos órgãos reprodutivos são o período em que a suplementação de água para a cultura tem maior efeito na sua produtividade. A deficiência hídrica [levando o potencial de água da folha a -1,8 até -2,0 MPa, quando ocorre paralisação da atividade fotossintética do milho (Boyer, 1978)] causa 25% de diminuição da produção quando aplicado antes da floração, 50% quando na floração, e 21% no enchimento de grãos (Waldren, 1983).

Tabela 2 • Valores aproximados de potencial de água letal (Ψa,l) para algumas espécies:

Espécie Ψa,l (MPa)

Plantas sensíveis à falta d’água: Lycopersicum esculentum -1,4* Phaseolus vulgaris -1,5 Vitis vinifera -1,5* Citrus spp. -2,0 Zea mays (já existem genótipos um pouco mais tolerantes) -2,0

Plantas moderadamente tolerantes à falta d’água: Helianthus annuus -2,2* Vigna unguiculata -2,5 Glicyne max -2,5* Hordeum vulgare -3,0* Triticum aestivum -3,0*

Plantas mais tolerantes à falta d’água: Pennisetum glaucum -3,0 Arachys hypogea -3,5* Cajanus cajans -3,5 Sorghum bicolor -3,5* Gossypium hirsutum -3,5 Prosopis juliflora -4,5* Beta vulgaris -5,0* Atriplex nummularia -6,0 Atriplex halimus -6,0 Acácia harpophylla -6,0*

* Dados apresentados por Boyer (1978).

Para complicar mais, no campo de cultivo, as plantas são expostas a vários estresses ambientais, como temperaturas altas, falta d’água, alta radiação luminosa e deficiência de nutrientes, causando um estresse múltiplo na planta (Yordanov, 2000). Dentre estes diferentes estresses, a falta de nutrientes também é freqüente em regiões sujeitas à falta d’água, e ambos os estresses afetam significativamente a produtividade agrícola (Payne, 2000). Na América tropical, em torno de 70% dos solos são ácidos e inférteis, e, no mundo, 25% da área cultivável tem também problemas químicos graves (Marschner, 1995). Portanto, nessas áreas, consideradas marginais, as plantas cultivadas sofrem freqüentemente de um estresse múltiplo, por falta d’água e de nutrientes (Winkel et al., 2001), e a associação destes dois fatores causa um efeito mais acentuado na redução da produtividade agrícola (Kramer & Boyer, 1995). A deficiência de água vai afetar a absorção e assimilação de nutrientes e a falta de nutrientes vai afetar a fotossíntese [a deficiência de N diminui a síntese de proteínas e, conseqüentemente, da Rubisco, enzima-chave na assimilação do CO2, que corresponde a mais de 50% das proteínas solúveis foliares, segundo Leegood, (1996)] e a resposta do vegetal à falta d’água (Schrader, 1985). Segundo Kramer & Boyer (1995), a deficiência em nitrogênio diminui a condutividade hidráulica e absorção de água, assim como a produção de ABA (que induz o fechamento estomático na parte aérea) pelas raízes e o déficit de água causado na parte aérea induz fechamento estomático mais cedo. Ainda segundo estes autores, a deficiência em fósforo afeta o balanço entre ABA e citocininas, afetando também a abertura estomática. Segundo Schulze (1991), um vegetal com alto suprimento de nutrientes mantém os estômatos abertos sob valores de potencial de água no solo mais baixos que plantas mal supridas.

Assim, o aumento da eficiência de uso de água (EUA), associado com o de nutrientes (EUN), dos vegetais [para os nutrientes, o mais crítico é o N, pois após o C, O e H, obtidos do CO2 e da H2O, o N é o quarto elemento em importância na composição de um vegetal (Marschner, 1995)], precisa ser um dos novos alvos do melhoramento vegetal, que deve ser conduzido em ambientes com limitação de água e de nutrientes (Duncan & Baligar, 1991; Harlan, 1992).

5.3 • O QUE É SECA?

Segundo Passioura (1997), os puristas têm uma visão muito simplista do conceito do termo para uso na agricultura, pois insistem que a seca é um termo meteorológico, que se refere somente a um período de tempo

123

A RELAÇÃO DA PLANTA COM A ÁGUA

em que a precipitação não é suficiente para manter o potencial de evapotranspiração de um campo cultivado; isto é, quando ocorre um déficit de volume de chuvas em relação ao requerimento hídrico da cultura (Rockström & Falkenmark, 2000), e o balanço hídrico da cultura se torna negativo (Angelocci, 2002). Uma definição mais apropriada seria que a seca é uma circunstância, na qual as plantas sofrem redução do seu crescimento ou produtividade, devido à insuficiência de suprimento de água, ou a um grande déficit de umidade do ar, mesmo com um suprimento de água adequado do solo (Passioura, 1997). Deve-se ressaltar que o tempo necessário para que a insuficiência de suprimento de água, por chuva ou irrigação, cause estas reduções no crescimento vai depender do tipo de planta, da capacidade de retenção de água no solo e das condições atmosféricas, principalmente DPV e temperatura, que controlarão a taxa de evapotranspiração. Em relação à planta, a seca pode ser vista como um estresse multidimensional (Yordanov et al., 2000), que afeta as plantas em vários níveis de sua organização, e a resposta à seca, ao nível da planta e do dossel, é complexa porque reflete a integração dos efeitos do estresse e das respostas da planta, sob todos os níveis da organização da planta, integrados no espaço e no tempo (Blum, 1997).

A seca é considerada um estresse ambiental que, segundo Larcher (2000), é um estado em que a demanda de energia pela planta para sua manutenção (sobrevivência) é maior que a produção, o que leva a uma desestabilização inicial das funções da planta, seguida por uma normalização e indução dos processos fisiológicos de adaptação. O estresse tem elementos construtivos e destrutivos, e é um fator de seleção e uma força motriz para incremento da tolerância e evolução adaptativa da planta. Por outro lado, um estresse suave pode ativar o metabolismo celular e aumentar a atividade fisiológica da planta (Boyer, 1978) sem causar nenhum dano, mesmo em longo prazo, sendo, portanto, favorável à planta (Lichtenthaler, 1996), como se vê frequentemente no aumento de A, para uma ligeira diminuição do Ψa da folha (Figura 10). Por exemplo, num campo irrigado, um dessecamento parcial das raízes tem levado a uma maior EUA, sem efeitos na produtividade (Stoll et al., 2000).

Os efeitos da seca são bastante variáveis em função da sua intensidade (duração da deficiência hídrica: veranico ou seca prolongada), da velocidade de imposição do estresse e do estádio de desenvolvimento da planta em que a seca ocorre (Kramer & Boyer, 1995). Em trigo, por exemplo, uma deficiência hídrica leve causa precocidade de floração enquanto uma seca severa causa retardo na floração (Blum, 1997).

124

CARLOS PIMENTEL

5.4 • COMO ESTUDAR AS RESPOSTAS DA PLANTA À SECA?

Uma gama de condições ambientais pode ser usada para a pesquisa sobre as respostas dos vegetais submetidos à seca, com variação para o controle da precisão do tratamento de estresse por falta d’água, e a correlação com a produtividade agrícola, nas regiões sujeitas à seca (Harlan, 1992; Rockström & Falkenmark, 2000). Os ambientes de estudo, de uma maneira geral, podem ser: em placas de Pétri, no laboratório; em solução nutritiva ou em potes com terra, em câmara de crescimento ou em estufas; no campo, em centros de pesquisa (havendo variações na forma do tratamento de seca: cultivo com e sem irrigação, em clima árido ou úmido; cultivo dependente de chuvas; cultivo protegido nos períodos críticos etc.); ou no campo nas regiões-alvo para a exploração agrícola. Além disto, pode-se estudar em pequena escala (poucos genótipos) ou larga escala (muitos genótipos). Nesses ambientes, a precisão da medida e o controle ambiental aumentam do campo para a placa de Pétri, mas a correlação com a produtividade da cultura aumenta no sentido contrário, da placa de Pétri para o campo (Bruce et al., 2002). Isto ocorre porque, por exemplo, o volume de raízes [que é menor nas plantas cultivadas em potes que no campo, visto que o crescimento radicular é plástico, e

125

A RELAÇÃO DA PLANTA COM A ÁGUA

Figura 10 • Relação entre a taxa de assimilação de CO2 (A) e o potencial de água da folha (Ψa) de duas espécies, uma sensível à seca, Phaseolus vulgaris, e outra tolerante à seca, Atriplex nummularia

Ψa (MPa)

Phaseolus vulgaris Atriplex nummularia A

(µm ol C

O 2

m -2

s -1)

depende do volume de solo disponível (Kramer & Boyer, 1995)] e o de solo a ser explorado, com o conseqüente volume de água disponível, é menor em experimentos em potes que no campo. Por isto, as plantas atingem o potencial crítico muito mais rapidamente em pote que no campo (Pimentel et al., 1999c), como se vê nas Figuras 11 e 12 e, muitas vezes, em experimentos em potes, as plantas não têm tempo hábil para expressar os seus mecanismos de adaptação à seca (Hanson & Hitz, 1982). Na Figura 12 se nota que, mesmo após 17 dias sem suplementação de água no campo, o Ψa da folha de caupi não foi menor que -1,2 MPa, enquanto em potes o Ψa da folha de caupi, atingiu valores de -2,3 MPa em apenas 12 dias (Pimentel & Hébert, 1999).

A velocidade de imposição do estresse (que é proporcional ao volume de água e, conseqüentemente, de solo, disponível para a planta) por falta d’água, é, portanto, crucial para o estudo da resposta de plantas. Segundo Sinclair & Ludlow (1986), à medida que o suprimento de água diminui, a planta passa por três estádios de desidratação: no estádio I, a transpiração se mantém como para uma planta bem suprida em água, até que o conteúdo em água disponível no solo seja reduzido a 50%, e a absorção de água não mais se iguale à demanda da transpiração; no estádio II, a transpiração começa a ser menor que o seu potencial, começando a haver fechamento estomático; e, no estádio III, os

126

CARLOS PIMENTEL

Figura 11 • Potencial de água da folha (em bars) de plantas de feijão cultivadas em potes de 10 l, durante 11 dias de desidratação e dois de reidratação

BAT 117

GF 1138

Grande Rio

A 320

DMSrehidratação

Tempo (dias)

Po te

nc ia

l h íd

ri co

( Ba

rs )

5 10 15 0

-05

-10

-15

estômatos estão completamente fechados, e toda perda de água da planta para a atmosfera ocorre pela cutícula (Figura 13). A sobrevivência das plantas, no final do estádio III, vai depender, em parte, de sua tolerância à dessecação, que é uma característica existente em sementes, fungos e esporos e musgos (Hoekstra et al., 2001), mas rara na maioria das plantas cultivadas (Blum, 1997).

127

A RELAÇÃO DA PLANTA COM A ÁGUA

Figura 12 • Potencial de água da folha em genótipos de feijão caupi, cultivados no campo com 3 níveis de irrigação (100%, 82% e 44% ETm), e com (B, D e F) ou sem (A, C e E) 17 dias de desidratação e 13 de reidratação

Tempo (dias) Tempo (dias) Ψ

(M Pa

) Ψ

(M Pa

) Ψ

(M Pa

)

Figura 13 • Os 3 estádios de desidratação, segundo Sinclair & Ludlow (1986)

Estádio I Estádio II Estádio III

Fração de água dsiponível no solo

120

100

80

60

40

20

0

In te

ns id

ad e

do p

ro ce

ss o

(% )

1,0 0,8 0,6 0,4 0,2 0,0

No campo, a imposição do estresse, por falta d’água, ocorre lentamente, devida principalmente a um fluxo noturno de água das camadas de solo mais profundas para as superficiais, onde a maioria das raízes se encontra (Tardieu & Simonneau, 1998). A gradual imposição do déficit hídrico é importante para que os mecanismos de tolerância à seca sejam ativados na planta (Hanson & Hitz, 1982), permitindo discriminar melhor uma variação genotípica. No trabalho de Sinclair & Ludlow (1986), identificando os três estádios de desidratação, as plantas foram cultivadas em sacos plásticos, com 0,13m de diâmetro e 0,14 e 2,3m de altura, cobertos com plástico, para evitar a evaporação direta da água do solo para a atmosfera; e neste caso, Vigna unguiculata e Cajanus cajans levaram 31 e 43 dias, respectivamente, para atingir o potencial de água crítico, tendo assim ocorrido uma imposição do estresse gradual, como ocorreria com as plantas no campo (Pimentel et al., 1999c).

Ismail et al. (1994) e Ray & Sinclair (1998), entre outros autores, demonstram que, apesar da quantidade de ABA produzida nas raízes e a relação entre a taxa de transpiração e o conteúdo de água no solo não variarem para diferentes tamanhos de potes, há redução significativa da massa seca da parte aérea e do volume de água transpirada, em potes de menor volume. Outrossim, Lawlor & Cornic (2002) comentam sobre dois tipos de comportamento da taxa de assimilação de CO2 (A) de plantas sob deficiência hídrica: no tipo 1, a resposta é próxima àquela apresentada por Sinclair & Ludlow (1986) e, no tipo 2, a resposta é um decréscimo quase que linear de A. Esses autores não comentam sobre o volume de potes usados para as respostas dos tipos 1 e 2, mas provavelmente a resposta do tipo 2 ocorre em potes de menor volume que a resposta do tipo 1, e talvez as plantas que apresentaram a resposta do tipo 2, se fossem cultivadas em potes maiores, poderiam apresentar uma resposta do tipo 1.

Portanto, muito cuidado deve ser tomado ao extrapolar resultados obtidos em potes, por exemplo, para o campo, pois em potes o crescimento radicular é restringido devido ao impedimento físico do fundo do pote, independentemente da disponibilidade de água existente (Masle & Passioura, 1987). Esta redução é causada, em parte, pela produção de etileno na raiz provocando desbalanço de ABA e etileno no xilema, reduzindo o crescimento da raiz, mas também da parte aérea (Hussain et al., 1999).

128

CARLOS PIMENTEL

5.5 • QUAIS AS RESPOSTAS À SECA ESTUDAR?

Em qualquer processo que requeira um número de fatores independentes agindo simultaneamente, como a fotossíntese e conseqüente acúmulo de massa seca, a velocidade do processo será regida pelo fator em menor intensidade ou mais lento, conceito que é conhecido como lei de Blackman (pesquisador do século XIX), segundo Boyer (1978). Este conceito se aplica muito bem à produtividade agrícola e ao efeito da seca nesta, pois praticamente todos os aspectos do crescimento vegetal são afetados pela falta d’água [do nível microscópico ao macroscópico (Blum, 1997)], sobretudo o acúmulo de matéria seca, que responderá pela produção vegetal (Hsiao, 1973; Boyer, 1978; Kramer & Boyer, 1995; Passioura, 1997). A resposta da planta à seca é caracterizada por mudanças fundamentais na relação da célula com a água, nos seus processos fisiológicos, na estrutura de membranas e de organelas celulares, além das mudanças morfológicas e fenológicas da planta, alterando a relação do seu dossel com o ambiente. Ao nível da planta, uma resposta usual ao estresse, antes mesmo de haver variação no conteúdo em água dos tecidos, é uma diminuição do crescimento, que é associado com alterações no metabolismo de carbono e de nitrogênio (Yordanov et al., 2000; Lawlor, 2002).

As respostas da planta à seca, discutidas a seguir, serão apresentadas em função dos estádios de estresse por falta d’água propostos Sinclair & Ludlow (1986), e descritos acima. A discussão se baseará muito na resposta da atividade fotossintética da planta, que é o processo central, mas não o único, para a produtividade vegetal (Boyer, 1978).

Estádio I (taxa de transpiração diária equivalente à de plantas hidratadas)

Hoje já sabemos que um ligeiro dessecamento do solo causará uma maior concentração de ABA no xilema (Hartung et al., 2002) e alteração da Lp da raiz e do xilema (Steudle, 2000; Javot & Maurel, 2002), que poderão induzir o fechamento estomático nas horas mais quentes do dia (Tardieu & Simonneau, 1998), e a diminuição do crescimento na folha (Hsiao, 1973; Yordanov et al., 2000; Chaves et al., 2002). Enquanto isso, a expansão celular da raiz pode se manter, pois o ABA, que foi acumulado na raiz, impede a produção de etileno nesta (Sharp & LeNoble, 2002), alterando a elasticidade de parede das células da raiz, permitido o crescimento radicular (Hsiao & Xu, 2000).

129

A RELAÇÃO DA PLANTA COM A ÁGUA

Em plântulas de milho, o acúmulo de ABA endógeno, quando o Ψa do solo ou do ar diminui, atua inibindo o crescimento da parte aérea e estimulando o crescimento de raízes, mantendo o turgor na zona de crescimento de raízes (Spollen et al, 2000; Ribaut e Pilet, 1991), principalmente em raízes nodais e mais profundas (Davies et al, 1990). Por outro lado, o acúmulo de citocininas e auxinas na parte aérea protege o aparatus fotossintético e a ultraestrutura cloroplástica, diminuindo o efeito da falta d’água e permitindo uma recuperação mais rápida, na reidratação (Kramer & Boyer, 1995; Yordanov et al., 2000). Dentre os efeitos do déficit hídrico na parte aérea, a expansão foliar é o processo mais sensível à falta d’água (Hsiao, 1973; Henson, 1985; Blum, 1997) e a diminuição da área foliar é uma resposta freqüente à deficiência hídrica, que afetará o potencial fotossintético e produtivo da planta, principalmente nos estudos feitos em potes (Teare & Peet, 1983). Além da diminuição da expansão foliar, uma ligeira diminuição da disponibilidade de água induz o fechamento estomático, principalmente nas horas de maior temperatura e DPV do ar, mas o volume de água transpirada durante o dia pode não ser afetado, pois a planta abre mais os estômatos nas horas menos quentes, para implementar a assimilação de CO2 total durante o dia (Pimentel et al., 1999b). Segundo Tardieu & Simonneau (1998), o comportamento estomático ao longo do dia pode servir para classificar as plantas em dois tipos: aquelas com comportamento isohídrico, que mantêm os estômatos abertos e têm o Ψa diminuído à tarde, como o milho e o tremoço; e aquelas com comportamento anisohídrico, que fecham os estômatos e mantêm o Ψa da folha alto e constante à tarde, como o feijão, a soja e o girassol. Segundo esses autores, nas espécies anisohídricas o valor do Ψa da folha é uma conseqüência do controle estomático e nas isohídricas é o inverso, o que mostra uma variabilidade no grau de sensibilidade dos estômatos ao ABA e/ou à tensão de água no apoplasto foliar. Contudo, estudos mais recentes detectaram estes dois tipos de comportamento, isohídrico e anisohídrico, em duas cultivares de videira de origens diferentes, uma mésica e outra de ambiente mediterrâneo, e a diferença de comportamento foi atribuída às diferenças de Lp dos ramos e pecíolo e não da folha (Schultz, 2003); e, sendo assim, não se pode fazer esta classificação por espécie, mas sim pela arquitetura hidráulica das plantas, em função do seu ambiente de origem.

Com o fechamento estomático [que por si só já causa aumento da temperatura da folha (Idso et al., 1986)] e as temperaturas mais altas, e, por

130

CARLOS PIMENTEL

conseqüência, com o mais alto DPV, no meio-dia, pode haver fotoinibição, pois este é também o período de maior incidência de radiação luminosa (Björkman & Powles, 1994). A fotoinibição, que ocorre tanto em plantas C3 quanto em plantas C4 (Long et al., 1994), é a redução do potencial fotossintético, reversível ou não, quando a atividade dos fotossistemas, com produção de poder redutor (NADPH2) e de energia química (ATP) são máximos, devido à alta luminosidade, mas a taxa de assimilação de CO2 (fase escura da fotossíntese) é reduzida por um estresse ambiental (Ludlow & Powles, 1988). Por exemplo, o fechamento estomático, associado com altas temperaturas, pode reduzir a assimilação do CO2, mais sensível, enquanto a atividade dos fotossistemas é mais tolerante (Chaves, 1991). Assim, o consumo do poder redutor e energia química, que foram produzidos pelos fotossistemas, é diminuído, devido à menor taxa de assimilação de CO2 (Long et al., 1994). Neste caso, a fotólise da água e o transporte de elétrons nos centros de reação dos fotossistemas continuam a ocorrer, com a alta radiação luminosa, mas a cadeia de transporte de elétrons está “fechada”, pois os compostos estão reduzidos, sem poder receber os elétrons liberados na fotólise da água. Estes elétrons podem então ser transferidos para EAO, que, por sua vez, causarão oxidação, reversível ou não, de compostos dos fotossistemas, principalmente nos centros de reação do PS II, na proteína D1 (Maxwell & Johnson, 2000). A fotoinibição diminui cerca de 10% do potencial produtivo das culturas (Long et al., 1994) e, a medida que o estresse por falta d’água se intensifica, com o passar dos dias, a fotoinibição é aumentada e os efeitos podem se tornar irreversíveis (Björkman & Powles, 1994).

Estádio II (taxa de transpiração menor que a de plantas hidratadas) Neste estádio II, com redução da abertura estomática e,

conseqüentemente, da transpiração, já vai haver redução da atividade fotossintética (que afetará o acúmulo de massa seca), pela menor área foliar (Blum, 1997), mas também pela diminuição da disponibilidade de CO2, devido ao fechamento estomático, que já diminui a fotossíntese (Chaves, 1991; Tang et al., 2002). Contudo, sobre a superfície de uma folha, formam-se “auréolas”, onde os estômatos se mantêm mais abertos (Scheuermann et al, 1991), assimilando mais CO2. Com a restrição mais severa de água, o potencial de turgescência da folha se anula, paralisando, além da expansão da área foliar, a biossíntese de proteínas e a atividade de enzimas como a nitrato redutase (Yordanov et al., 2000; Quadro 2).

131

A RELAÇÃO DA PLANTA COM A ÁGUA

Respostas na assimilação de CO2 – O fechamento estomático é considerado a primeira linha de defesa contra o dessecamento (Chaves, 1991), mesmo antes de ocorrer diminuição do conteúdo de água da folha (Yordanov et al., 2000). Contudo, segundo Zwieniecki & Holbrook (2000) e Cochard et al. (2002), o principal objetivo do fechamento estomático é evitar a cavitação e uma catastrófica falha do sistema de condução de água, em vez de objetivar apenas a redução das perdas de água pela transpiração, visto que os estômatos podem responder diretamente ao aumento da tensão de água no xilema, fechando-se (Netting, 2000). Sob seca, segundo Lauer & Boyer (1992), a limitação da fotossíntese pelo fechamento estomático é

132

CARLOS PIMENTEL

Quadro 2 • Respostas de plantas à deficiência hídrica

Ligeira deficiência hídrica (Estádio I*, sem redução na transpiração e que pode ocorrer, mesmo em plantas irrigadas, quando o DPV do ar é alto):

Alteração no conteúdo de fitormônios (↑ ABA, ↓ citocininas e auxinas); ↓ expansão foliar; ↓ potencial de turgescência; ↓ biossíntese protéica; ↑ fotoinibição.

Deficiência hídrica moderada (Estádio II*, com redução da transpiração): ↓ Condutância estomática (gs); ↑ Lp da raiz (atividade das aquaporinas e fluxo apoplástico); ↓ taxas de assimilação fotossintética e de transpiração (pela gs); ↓ atividade da nitrato redutase, da sacarose fosfato sintetase (SFS), e da invertase ácida (IA); ↑ conteúdo de carboidratos solúveis e aminoácidos livres (prolina), (concentração passiva e ajuste osmótico e/ou de elasticidade de parede); ↓ conteúdo de ascorbato (vit. C), tocoferol (vit. E), xantofilas e outros carotenos, ATP, NADPH2 e RuBP; ↓ Taxa de assimilação fotossintética, pela atividade enzimática (regeneração da RuBP e atividade da Rubisco) e dos fotossistemas (atividade da ATPase, mas na pré-floração, os fotossistemas são mais sensíveis).

Deficiência hídrica severa (Estádio III*, transpiração mínima, via cutícula): ↓ Lp da raiz; ↓ fluxo de carboidratos para o dreno a ser colhido; ↑ atividade de enzimas hidrolíticas, como as α-amilase, proteases e lipases e degradação de galactolipídeos das membranas; ↓ atividade das peroxidases (superóxido dismutase, ascorbato peroxidade, glutationa redutase e catalase); ↓ conteúdo de amido, de proteínas solúveis e, por último, de clorofilas; ↑ conteúdo de espécies ativas de oxigênio (EAO): peróxido, oxigênio singleto e hidroxila; e ↑ liberação de eletrólitos.

Deficiência hídrica letal: ↑ Descompartimentalização (desarranjo de membranas, principalmente dos cloroplastos e das mitocôndrias, com perda da integridade membranar).

* Segundo Sinclair & Ludlow (1986).

pequena, e menor que o efeito estomático na transpiração, sendo que a maior limitação é metabólica (Ghannoum et al., 2003). Tang et al. (2002) ressaltam também que a variação da condutância estomática (gs) é proporcional à da transpiração, mas esta proporcionalidade não é uniforme na folha.

Atualmente, existem duas linhas de pesquisa sobre as causas da diminuição da atividade fotossintética sob desidratação. Os estudos da equipe de Boyer mostram que a limitação da atividade fotossintética é mais um efeito metabólico [Ghannoum et al., (2003) também confirmam isto], e a Ci medida se mantém alta e mesmo aumenta com a seca, enquanto as equipes de Lawlor, Cornic e Chaves afirmam que a limitação da fotossíntese é principalmente devido à menor difusão de CO2 para o interior da folha (menor Ci e disponibilidade de CO2 para a Rubisco), causada pelo fechamento estomático (Ort et al., 1994), com menor limitação metabólica, que ocorreria só com o estresse severo (Chaves et al., 2002; Cornic, 2000; Lawlor & Cornic, 2002). Contudo, o próprio Lawlor (1976) mostra que o ponto de compensação de CO2 aumenta com a diminuição do Ψa da folha, indicando um aumento das reações de descarboxilação, à fotorespiração e respiração mitocondrial, o que aumentaria a Ci.

Os resultados da equipe de Boyer, obtidos desde o início da década de 1970 (Boyer, 1970), mostram que, com o dessecamento dos tecidos, o transporte de elétrons, a fotofosforilação e a síntese de ATP são reduzidos, o que por sua vez diminui a capacidade de regeneração da RuBP. Lawlor (2002), Parry et al. (2002) e Flexas & Medrano (2002) confirmam essa redução da síntese de ATP, mesmo em um estresse moderado, que por sua vez diminui a capacidade de regeneração da RuBP. Contudo, Lawlor (2002) e Ort et al. (1994) argumentam que o conteúdo de ATP não é fator limitante para a assimilação do CO2.

Quanto à atividade e quantidade da Rubisco, há resultados mostrando uma diminuição de quantidade e atividade desta enzima (Yordanov et al., 2000; Parry et al., 2002), e em outros estudos não há variação nesta e na FosfoEnol Piruvato carboxilase (Ghannoum et al., 2003). In vivo, as condições metabólicas e físico-químicas do citoplasma são alteradas (Vieira da Silva, 1976), e podem afetar esses processos (que são medidos, na maioria das vezes, in vitro). Com a diminuição do conteúdo de água na célula, ocorrem distorções da parede celular, ruptura e lise da plasmalema, dos cloroplastos, mitocôndrias e de outras organelas (podendo chegar ao colapso dos espaços intercelulares e lise da célula), reduzindo assim a atividade das reações associadas às membranas, como a atividade

133

A RELAÇÃO DA PLANTA COM A ÁGUA

bioquímica da fotossíntese (Tang et al., 2002). Segundo Pham Thi & Vieira da Silva (1975) os cloroplastos e mitocondrias são organelas muito sensíveis à seca, sofrendo ruptura e lise de suas membranas, com perda da sua integridade, enquanto os peroxissomas são menos sensíveis, quando ocorre déficit hídrico mais severo. Portanto, os resultados de Lauer & Boyer (1992), Tang et al. (2002), Flexas & Medrano (2002) e Ghannoum et al. (2003) demonstram que o fechamento estomático reduz um pouco a assimilação de CO2, no estádio II, que é mais afetada por uma inibição metabólica do processo. Ghannoum et al. (1993) demonstram em quatro plantas C4 que a assimilação de CO2 e a eficiência quântica do PSII são sensíveis, mesmo a uma deficiência hídrica moderada, independente do suprimento de CO2 (ou da gs). Lauer & Boyer (1992) mediram in situ a Ci em plantas sob desidratação, e não detectaram redução desta sob seca, o que mostra que a limitação da fotossíntese sob seca não pode ser estomática. As afirmações de Chaves et al. (2002), Cornic (2000) e Lawlor & Cornic (2002) sobre o controle estomático da fotossíntese sob seca são baseadas nos valores de Ci calculados e não medidos.

Quanto à atividade dos fotossistemas, apesar da seca diminuir a fotofosforilação pela redução na síntese de ATP [atividade da ATPase, segundo Lawlor (2002) e Flexas & Medrano (2002)], alguns resultados mostram que a liberação de O2 é bastante tolerante à seca, e só é afetada em um conteúdo de água abaixo de 40% (Chaves, 1991; Yordanov et al., 2000). Porém, outros estudos mostram uma redução neste processo sob estresse moderado (Tang et al., 2002; Flexas & Medrano, 2002), especialmente no início do período reprodutivo (Pimentel et al., 1999a). O efeito da falta d’água, quando associado com alta radiação luminosa (quando há seca, em geral, ocorre também alta radiação luminosa), ocorre principalmente no centro de reação do PSII, causando a degradação das proteínas CP43 e D1 (Yordanov et al., 2000). Ghannoum et al. (2003) sugerem que a menor sensibilidade da atividade do PS II pode ser devida ao desvio de elétrons da cadeia de transporte para a reação de Mehler, cuja atividade é aumentada sob falta d’água (Chaves et al., 2002) e pela maior atividade fotorrespiratória sob seca (Noctor et al., 2002), que consome ATP e NADPH2. Contudo, o ciclo das xantofilas, discutido abaixo, parece ser um dos mais importantes mecanismos de dissipação de excesso de energia do PS II (Long et al., 1994; von Caemmerer, 2000).

Assim, a falta d’água mais severa diminui o transporte de elétrons e a fotofosforilação, pela perda da atividade de reações associadas às membranas, diminuindo a síntese de ATP e, conseqüentemente, a regeneração da RuBP,

134

CARLOS PIMENTEL

diminuindo o conteúdo de trioses-P, frutose-6P e RuBP, e diminuindo a atividade da Sacarose Fosfato Sintetase (SFS), mas não a atividade da Frutose- 1,6- Bisfosfatase e da Rubisco, segundo Tang et al. (2002).

Respostas na produção de EAO e nos sistemas antioxidantes – Sob condições ótimas de hidratação, as folhas são ricas em enzimas e compostos antioxidantes, e podem conviver com as formas ativas de O2, as EAO. Quando ocorre falta d’água, a atividade dos sistemas enzimáticos e dos compostos antioxidantes de defesa das plantas é diminuída (Chaves et al., 2002), com aumento da concentração das EAO (radicais peróxido, oxigênio singleto e hidroxilas), segundo Chaves et al. (2002) e Noctor et al. (2002), aumentando o efeito fotoinibitório (Yordanov et al., 2000; Flexas & Medrano, 2002).

Com a imposição da deficiência hídrica, a concentração de compostos antioxidantes, como o ascorbato, a glutationa, o tocoferol e outros carotenóides (incluindo-se aqui as xantofilas) diminui, o que aumenta mais a concentração de EAO livres na célula, que vão causar peroxidação de lipídeos e outros compostos (Noctor et al., 2002; Yordanov et al., 2002). Além disso, os principais sistemas enzimáticos de desintoxicação dessas EAO, que envolvem a ação de Superóxido Dismutase (SOD), peroxidases (POX) e redutases, retirando elétrons das EAO, com consumo de poder redutor, são alterados. Com a falta d’água, a atividade dessas enzimas é diminuída, tais como a da SOD, da POX e, especialmente, a da ascorbato peroxidase (APOX), mas também da dehidroascorbato redutase (DHAR) e da glutationa redutase (GR) e também da catalase (CAT), segundo Yordanov et al. (2002). As enzimas APOX, DHAR e GR são enzimas-chaves no ciclo do ascorbato/glutationa nos cloroplastos, que é associado à reação de Mehler, e que consome o H2O2 produzido nesta reação (von Caemmerer, 2000). Já a catalase é uma enzima localizada no peroxissoma, consumindo o H2O2 produzido na fotorrespiração, protegendo o citoplasma. Por outro lado, o H2O2 produzido no citoplasma da célula interage com o ABA, nas células-guarda, para o controle da abertura estomática (Schroeder et al., 2001), podendo ser considerado um mensageiro intracelular para iniciar as respostas à deficiência hídrica (Noctor et al., 2002).

Outro importante sistema antioxidante dos cloroplastos, sendo considerado o principal para a dissipação de energia do PS II (para evitar o desvio de elétrons produzidos na fotólise da água, formando EAO, e a conseqüente fotoinibição), sob seca, é o ciclo das xantofilas, em que a violoxantina é transformada em anteroxantina e depois epoxidada a zeaxantina, consumindo elétrons durante o dia, enquanto à noite a zeaxantina

135

A RELAÇÃO DA PLANTA COM A ÁGUA

é de-epoxidada a violoxantina (Long et al., 1994), diminuindo assim o efeito fotoinibitório causado pela seca (von Caemmerer, 2000).

Respostas no metabolismo de carboidratos, proteínas e lipídeos – A concentração de carboidratos solúveis (sacarose, frutose e glicose, principalmente) e insolúveis (amido) nos tecidos, para uso na manutenção e crescimento destes, é considerada como reguladora tanto da fotossíntese quanto da respiração (Farrar, 1993). A concentração de açúcares no citoplasma (controlada pela demanda em outros tecidos) vai regular a taxa de assimilação de CO2 e/ou a síntese ou hidrólise do amido, ambos no cloroplasto (Leegood, 1996). Por exemplo, o início do desenvolvimento do embrião no órgão reprodutivo causa aumento da taxa de assimilação de CO2 nas folhas-fontes desse órgão, através da exportação de auxinas, oriundas do órgão reprodutivo, para elas, para garantir um fluxo de fotoassimilados para manter o desenvolvimento do embrião (Westgate & Boyer, 1985; Schussler & Westgate, 1985), o que torna esta fase de desenvolvimento muito sensível à seca (Bascur et al., 1985; Pimentel et al., 1999a,b). Provavelmente, sob desidratação, os níveis de carboidratos no citoplasma, que são alterados (Pimentel, 1999), vão ativar as respostas da planta à deficiência hídrica e/ou participar delas, como no ajustamento osmótico, que é feito somente por algumas plantas (Morgan, 1994). Com a desidratação, há uma diminuição do conteúdo de amido na célula, sobretudo no estádio II de desidratação, com a redução na fotossíntese, e aumento de açúcares solúveis (Rossiello et al., 1981b; Pimentel, 1999), devido à paralisação no crescimento celular e na síntese de sacarose (Vassey & Sarkey, 1989) para exportação.

Como discutido anteriormente, existem dúvidas sobre as causas da redução da concentração de ATP e de RuBP no cloroplasto sob desidratação, que pode ser causada pela redução da atividade da ATPase cloroplástica (Lawlor, 2002; Lawlor & Cornic, 2002) ou diminuição da entrada de Pi no cloroplasto, via o antiporte triose-P/Pi, devido ao acúmulo de açúcares no citoplasma, sem liberação de Pi (Leegood, 1996), pois a atividade da Sacarose fosfato sintetase é diminuída sob déficit de água, assim como a síntese de amido (Vassey & Sarkey, 1989). Sob seca, as atividades da Rubisco, G3P desidrogenase, Ru5P cinase e FruBP sintetase também são diminuídas em alguns estudos (Chaves et al., 2002; Flexas & Medrano, 2002; Parry et al., 2002), diminuindo a capacidade bioquímica de assimilação e de utilização de CO2 (Lauer & Boyer, 1992; Tang et al., 2002); mas, em outros estudos, a atividade dessas enzimas não é alterada (Yordanov et al., 2000).

136

CARLOS PIMENTEL

Com a imposição do estresse e redução da assimilação de CO2, o amido de reserva começa a ser hidrolisado, para suprir a respiração de manutenção (Kramer & Boyer, 1995) e, com isto, haverá maior acúmulo de carboidratos solúveis, aminoácidos [devido ao aumento da proteólise (Roy- Macauley et al., 1992)] e ácidos orgânicos (Hanson & Hitz, 1982). Além destes compostos orgânicos, íons inorgânicos (K+, NO3

-, Cl- etc.) são acumulados ativamente, promovendo, junto com os íons orgânicos citados anteriormente, o ajuste osmótico, em plantas que apresentam esta resposta (Morgan, 1984).

Quanto ao metabolismo de proteínas, no estádio I, já ocorre paralisação da biossíntese proteica (Kramer & Boyer, 1995) e, no estádio II, começa a haver proteólise (Roy-Macauley et al., 1992), o que causa aumento do conteúdo de aminoácidos livres nos tecidos e redução no conteúdo protéico (Pimentel, 1999). Para as enzimas do metabolismo fotossintético, como dito anteriormente, existem resultados contraditórios sobre a atividade e quantidade dessas enzimas. Os resultados obtidos são de difícil interpretação, visto que as medidas são feitas in vitro e, in vivo, as alterações físico-químicas que ocorrem na célula podem alterar essa atividade. Parry et al. (2002) assinalam que a menor atividade da Rubisco é devida à ação de inibidores (2-carboxiarabinitol-fosfato-CA1P), que são sintetizados sob desidratação, e com a reidratação a atividade da Rubisco é restabelecida, assim como a da FosfoEnol Piruvato carboxilase (Ghannoum et al., 2003). Outras enzimas do metabolismo de carboidratos têm sua atividade diminuída (Chaves et al., 2002; Vassey & Sharkey, 1989), assim como algumas enzimas dos sistemas antioxidantes, citadas acima.

Contudo, algumas proteínas envolvidas na interação hidrofílica com macromoléculas celulares, para sua estabilização, são sintetizadas, como as deidrinas (Yordanov et al., 2000), proteínas abundantes na embriogênese tardia (LEAs) e proteínas de choque térmico (HSP), que também têm função na estabilização de outras proteínas citoplasmáticas e membranares (Hoekstra et al., 2001), assim como atuam na recuperação dos danos causados pelos estresses térmico, osmótico e de desidratação (Xiong et al., 2002).

Outros compostos com ação protetora do metabolismo são as poliaminas, putrescina, espermidina e espermina, que atuam mantendo a capacidade de crescimento, principalmente em raízes, sob condições de estresse (Bruce et al., 2002).

O metabolismo de lipídeos é alterado sob desidratação, assim como a associação entre lipídeos e proteínas membranares, a atividade enzimática e de transportadores das membranas, e a composição proteica e lipídica das

137

A RELAÇÃO DA PLANTA COM A ÁGUA

membranas (Yordanov et al., 2000). A composição lipídica das membranas celulares, assim como a capacidade de sua síntese de novo (restauração das membranas) com a reidratação, afeta diretamente a capacidade de sobrevivência da célula (Pham Thi et al., 1982). Com o déficit hídrico mais severo, há alteração na composição dos lipídeos membranares, com redução no conteúdo de lipídeos polares e poli-insaturados (Pham Thi et al., 1990), primeiro dos glicolipídeos e, com a severidade do estresse, dos galactolipídeos (Monteiro de Paula et al., 1993), com menor porcentagem do ácido linolênico, associado com aumento da porcentagem do ácido linoleico (Pham Thi et al., 1982). Segundo Monteiro de Paula et al. (1993), esse decréscimo no conteúdo lipídico nas membranas de plantas estressadas é devido à redução do processo de biossíntese de lipídeos e aumento dos processos de degradação, pela maior atividade de lipases. A degradação de galactolipídeos poli- insaturados das membranas é, sem sombra de dúvidas, responsável pela desorganização das membranas cloroplásticas, que vai levar à morte das plantas (Viera da Silva, 1976), e os ácidos graxos liberados das membranas vão inibir o transporte de elétrons para a fotossíntese (Yordanov et al., 2000).

A seca e outros estresses causam aumento de RNAm para a síntese da fosfolipase C, responsável pela produção de IP3 oriundo dos fosfolipídeos das membranas, para iniciar a cascata de reações em resposta ao estresse, induzindo a produção de proteínas LEAs e ativando os canais iônicos; a fosfolipase D parece também estar envolvida na resposta à seca (Xiong et al., 2002).

Estádio III (transpiração quase nula e cuticular) Quando a atividade das enzimas hidrolíticas, citadas no item

anterior, é alta, começa a haver ruptura de membranas, principalmente dos cloroplastos e mitocôndrias, organelas mais sensíveis ao déficit hídrico (Pham Thi & Vieira da Silva, 1975), ocorrendo a descompartimentalização e paralisação dos eventos fisiológicos, como a fotossíntese e respiração, não havendo mais possibilidade de recuperação (Vieira da Silva, 1976).

5.6 • VARIÁVEIS INDICADORAS DA RESPOSTA DA PLANTA AO ESTRESSE POR SECA

Durante algum tempo, se buscava um único teste, se possível de campo, que fosse indicador da tolerância à seca, para discriminar genótipos de uma mesma espécie. Hoje se sabe que isto é impossível devido à

138

CARLOS PIMENTEL

multiplicidade de características fisiológicas, em diferentes órgãos da planta, que conferem a adaptação à falta d’água, que é, por isso, considerada uma característica multigênica (Blum, 1997). Houve uma atenção considerável dedicada ao acúmulo de prolina, visto que alguns resultados mostram uma alta correlação entre este acúmulo e a tolerância à seca (Hsiao, 1973), mas existem resultados contraditórios, em que genótipos mais sensíveis podem acumular mais prolina (Rossiello et al, 1981a). Este acúmulo de prolina é função do aumento do pool de aminoácidos livres (mas há também o acúmulo de outros aminoácidos, como o ácido gama-aminobutírico e asparagina), sendo causado por vários fatores: estímulo da sua síntese, a partir de glutamato; diminuição da sua oxidação; queda na sua incorporação em proteínas; e aumento da proteólise. As variações encontradas podem ser devidas ao efeito do estresse ocorrer em etapas distintas do metabolismo da prolina (Hanson e Hitz, 1982).

Não existe uma única variável fisiológica que por si só seja indicativa de tolerância à seca. O ideal é avaliar-se algumas variáveis, que podem ser estudadas em diferentes fases do ciclo, em casa de vegetação e em campo (Passioura, 1997). Pode-se avaliar variáveis fisiológicas de fácil mensuração, com equipamentos mais simples, como: a área foliar e o acúmulo de massa seca na parte aérea, considerados por Blum (1997) como variáveis mais sensíveis ao estresse; o conteúdo relativo em água, o CRA (Pimentel et al., 1990); os potenciais de água (Ψa), osmótico (Ψπ) e de turgescência (Ψt) da folha (Bolaños & Edemeades, 1991), com uma bomba de Scholander ou por psicrometria com um microvoltímetro; assim como analisar-se os teores de potássio, de carboidratos solúveis, aminoácidos, amido, proteínas solúveis e outros solutos como ácidos orgânicos etc., em amostras coletadas ao mesmo tempo no campo, para posterior análise no laboratório (Adjahoussou & Vieira da Silva, 1978; Souza & Vieira da Silva, 1992; Pimentel, 1999). Segundo Farrar (1996), o conteúdo de carboidratos nos tecidos, principalmente o de amido e açúcares solúveis, é um sinalizador para induzir ou reduzir a produção e uso das reservas de fotoassimilados na planta, o que os torna excelentes indicadores da atividade metabólica da planta. Outras variáveis indicadoras, com equipamentos mais sofisticados são: o grau de abertura estomática, com um porômetro e/ou trocas gasosas, com um analisador de gases infra-vermelho (Pimentel et al., 1999a,b,c); a discriminação isotópica 13CO2

12CO2 -1, com um espectrômetro de massa

(White et al., 1990); a temperatura de folha, com uma pistola à termometria infra-vermelha (Bascur et al., 1985); ou a emissão de fluorescência da folha, com um fluorímetro (Maxwell & Johnson, 2000).

139

A RELAÇÃO DA PLANTA COM A ÁGUA

Vale ressaltar que a medição do CRA, apesar de simples, pode ser uma melhor indicadora da intensidade do estresse por seca que o Ψa, principalmente em plantas que não realizam ajuste osmótico, como as leguminosas, à parte o guandu e amendoim (Hsiao, 1990). Mesmo em plantas que fazem o ajuste osmótico, como o milho, a simples mensuração do Ψπ não foi suficiente para discriminar genótipos mais tolerantes (Bolaños & Edemeades, 1991), sendo necessário também avaliar o coeficiente de elasticidade de parede (Neumann, 1995), junto com o Ψπ, para fazer essa discriminação. A avaliação conjunta do CRA e do Ψa se mostra mais indicadora que a avaliação de apenas uma das duas (Hsiao, 1990; Pimentel, 1999).

Uma variável, que tem se mostrado de grande utilidade pela rapidez da mensuração, avaliando assim um grande número de genótipos no campo, e que serve para indicar o efeito de diferentes estresses, como altas e baixas temperaturas, seca e salinidade (Long et al., 1994), é a emissão de fluorescência. Esta medida não é tão precisa como as medidas das trocas gasosas, mas é rapidamente realizada, permitindo estudar-se um grande número de genótipos (Maxwell & Johnson, 2000). A termometria infra- vermelha é outra variável, com equipamentos que permitem avaliar rapidamente, no campo, um grande número de genótipos, ou para monitoramento à distância, com a aviação agrícola ou por satélite, para indicar a necessidade de irrigação nos campos avaliados.

As avaliações dessas variáveis fisiológicas, em casa de vegetação, são importantes pelo controle ambiental, homogeneização dos tratamentos e avaliação de um maior número de variedades. Porém, deve-se tomar muito cuidado na extrapolação dos resultados (Ludlow, 1976), para o campo ou para recomendações de cultivo. Deve-se fazer uma avaliação da performance das variedades em campo (o ideal seria no campo do produtor), onde se deve avaliar o desenvolvimento do sistema radicular (que não pode ser avaliado em casa de vegetação, mesmo com potes de grande porte) em relação à parte aérea, a temperatura do dossel, abertura estomática, e Ψa, que respondem diferentemente no campo (Boyer, 1978); assim como para as concentrações de solutos, enzimas e ABA, a avaliação de campo trará mais certeza aos resultados obtidos em condições controladas. Contudo para o início de uma avaliação de genótipos, em casa de vegetação, pode-se ter um maior número de genótipos e de tratamentos, com medidas mais precisas.

140

CARLOS PIMENTEL

141

A RELAÇÃO DA PLANTA COM A ÁGUA

5.7 • EM QUE ESTÁDIO DE DESENVOLVIMENTO ESTUDAR AS RESPOSTAS DA PLANTA À SECA?

Os estádios de desenvolvimento em que as culturas são, em geral, mais sensíveis ao déficit hídrico são a emergência, a floração e a fase inicial de frutificação, e menos na fase vegetativa ou de maturação do órgão colhido (Bascur et al., 1985; Guimarães, 1996; Pimentel et al., 1999c,d).

Durante o desenvolvimento da planta, a densidade de raízes aumenta até o início da floração, decrescendo após, diminuindo a eficiência de absorção de água (Duncan & Baligar, 1991). Quanto às folhas, a atividade fotossintética por área aumenta com a idade da folha, até a sua expansão máxima, decrescendo após, até a sua senescência. Por isso, as folhas jovens são drenos importantes, principalmente no início do desenvolvimento do vegetal (Wardlaw, 1990). Por exemplo, após a expansão máxima da folha, a capacidade de ajustamento osmótico vai sendo perdida gradualmente (Morgan, 1984). Assim sendo, para obtenção de máxima produtividade agrícola, deve haver uma sincronia entre o desenvolvimento máximo, das raízes e das folha-fontes dos órgãos a serem colhidos, e o início do período reprodutivo (Wardlaw, 1990), quando o crescimento vegetativo é paralizado, de forma a haver a máxima absorção de água e de nutrientes pelas raízes (Duncan & Baligar (1991), para garantir a máxima atividade fotossintética nas folhas-fontes (Pimentel et al., 1999a, b).

O desenvolvimento reprodutivo do milho, por exemplo, é mais vulnerável ao estresse por deficiência hídrica durante a antese, diminuindo a sua sensibilidade com a progressão da reprodução (Sinclair et al, 1990; Bruce et al, 2002). Westgate & Boyer (1985) e Zinselmeier et al. (1995) demonstraram que o desenvolvimento do embrião na semente, após a polinização, é dependente da quantidade de carboidratos exportados pelas folhas-fontes para o órgão reprodutivo. Portanto, o desenvolvimento do grão depende da atividade fotossintética e acúmulo de amido destas folhas-fontes, pouco antes da polinização e fecundação das flores, para que haja grande translocação de açúcares para as flores, a fim de garantir o desenvolvimento do embrião, e conseqüentemente do grão. Hoje se sabe que o desenvolvimento do tubo polínico é menos sensível à falta d’água, e o “pegamento” da flor depende da exportação de carboidratos das sua folhas-fontes. Caso haja um estresse ambiental no momento da fecundação das flores, como falta d’água ou temperaturas altas, a atividade fotossintética das folhas-fontes será reduzida, causando um maior aborto de flores (Kramer & Boyer, 1995).

Segundo Waldren (1983), os valores de Ψa de folha na fase vegetativa podem ser um bom indicador da intensidade do estresse por falta d’água; contudo, na fase reprodutiva o seu uso fica incerto, devido à maior sensibilidade da cultura ao estresse neste estádio. Neste estádio de desenvolvimento, o conteúdo relativo em água (CRA) poderia ser um melhor indicador da intensidade do estresse (Hsiao, 1990). O histórico da cultura também é importante, pois aquelas plantas que tenham sido submetidas à falta d’água anteriormente no ciclo possuem maior tolerância à seca (“hardening”), com o seu potencial de água crítico mais baixo e maior capacidade de ajustamento osmótico (Morgan, 1984) .

142

CARLOS PIMENTEL

143

A RELAÇÃO DA PLANTA COM A ÁGUA

Respostas Adaptativas das Plantas à Deficiência Hídrica

Capítulo 6

6.1 • INTRODUÇÃO

Os estudos realizados por Charles Darwin, durante sua viagem no Beagle, de 1831 a 1836, pela América do Sul, resultaram em seu livro “A origem das espécies”, que foi publicado pela primeira vez em 1859 (13 anos de preparação antes de publicá-lo…). Em sua edição mais moderna (Darwin, 1998), têm-se alguns textos que valem uma reflexão dos pesquisadores preocupados com a adaptação ambiental, no Capítulo 5 “Luta pela existência” e no Capítulo 6 “Seleção natural; ou a sobrevivência da mais adaptado”:

“Cada ser vivo, por mais simples que seja, está lutando para aumentar em número”… “Devemos nos consolar com o pensamento que a guerra da natureza não é incessante, que a morte seja rápida e que os mais vigorosos, mais saudáveis e mais felizes sobrevivam e se multipliquem.”… “Entre os seres vivos da natureza existe alguma variabilidade individual… se essa variação for em algum grau favorável para esse indivíduo da espécie, na sua infinitamente complexa relação com outros seres vivos e com suas condições físicas de vida, ela permitirá a preservação deste indivíduo. Cada pequena variação, se útil, será preservada pela Seleção Natural… e trará sucesso ao indivíduo, em deixar sua progênie.”… “Por outro lado, qualquer variação, no mínimo grau nociva, será destruída. A preservação das diferenças individuais favoráveis, e a destruição daquelas nocivas, eu chamei de Seleção Natural, ou a Sobrevivência do mais adaptado.”

“O clima tem uma grande importância na determinação do número de espécies, e períodos de frio e de seca são os mais efetivos nesse controle.”… “As diferenças individuais dadas pela natureza, e que podem ser selecionadas pelo Homem, devem primeiro ocorrer.”… “A variabilidade está, geralmente, relacionada às condições de vida a que cada espécie foi exposta durante sucessivas gerações.”… “Uma planta, na beira de um deserto, luta pela vida contra a seca, porém, mais precisamente, depende da umidade ali existente.”… “A seleção natural vai invariavelmente tender a preservar aqueles indivíduos nascidos com características que o fazem mais adaptado ao local que habitam.”

Atualmente, mais de um bilhão de pessoas não se alimentam adequadamente. Em torno de 60% das comunidades rurais nos trópicos e sub-trópicos estão sendo afetadas pela queda da produção agrícola familiar, sendo piores as condições na África subsaariana, parte da América Latina, Caribe, e Ásia Central, principalmente devido à degradação dos solos e maior incidência de secas, que serão cada vez mais freqüentes, com as mudanças

144

CARLOS PIMENTEL

climáticas globais (Stocking, 2003). Assim sendo, para que a produção agrícola possa ser implementada nas áreas marginais da Terra, onde o aumento da população é maior e a produtividade agrícola é baixa (Rockström & Falkenmark, 2000), necessita-se desenvolver sistemas de produção de baixo custo tecnológico, com plantas que evoluíram nestas áreas (Harlan, 1992). Nesses sistemas, se deve cultivar genótipos de espécies mais adaptadas aos estresses ambientais múltiplos, como a falta de água e de nutrientes, e, sobretudo, estes genótipos devem ser selecionados em ambientes marginais, e não em ambientes propícios aos vegetais, como ocorre na maioria das estações experimentais de pesquisa (Payne, 2000; Bruce et al., 2002). Segundo Blum & Sullivan (1986), os genótipos de milheto e de sorgo selecionados em regiões secas são mais tolerantes à desidratação que aqueles selecionados em regiões úmidas. Por isto, a tradicional filosofia para aumento da produção agrícola pela modificação do ambiente (com irrigação, uso de altas doses de fertilizantes etc.), para adaptá-lo às necessidades das cultivares usadas, já não é muito adequada a atual realidade agrícola, sobretudo após a crise do petróleo e da energia elétrica (alto custo atual do petróleo e da energia elétrica comparado às décadas de 50 e 60, na chamada revolução verde), e principalmente para estas áreas marginais. A nova filosofia da produção agrícola deve enfatizar a adaptação das cultivares ao ambiente, que é mais adverso nas regiões marginais (Duncan & Baligar, 1991). Nas áreas marginais para a agricultura, os agricultores tradicionais continuam a cultivar suas variedades locais, selecionadas no local, que se tornam assim um excelente banco de germoplasma para uso na seleção de plantas adaptadas à falta de água, nutrientes etc. (Harlan, 1992).

Durante os últimos 400.000.000 de anos de evolução das plantas, com a pressão seletiva de ambientes secos e salinos fora dos mares, as variações no comportamento entre espécies começaram a evoluir, surgindo plantas mais adaptadas aos ambientes mais áridos (Dietrich et al., 2001). Visto que a agricultura tem aproximadamente 10.000 anos, o processo seletivo feito pelo Homem, por mais que tenha tido avanços, como a adaptação do trigo (originário do Próximo Oriente) ou do milho (originário da América Central), às baixas temperaturas da Europa (Harlan, 1992), não pode ser comparado (principalmente pelo número de gerações envolvidas) com a seleção natural ocorrida nos ambientes marginais, onde as plantas nativas dessas áreas se desenvolveram por um longo período. O processo de seleção natural em regiões marginais, sujeitas à falta de água e de nutrientes, fez com que os materiais genéticos nativos dessas áreas sejam mais adaptados aos estresses

145

A RELAÇÃO DA PLANTA COM A ÁGUA

desse ambiente, como por exemplo o feijão guandu, amendoim, milheto e sorgo, quando comparados com genótipos originários de regiões mais úmidas e de alta fertilidade natural, como o feijão comum e o milho (Duncan & Baligar, 1991; Harlan, 1992).

A despeito dos muitos estudos para se entender as causas das inúmeras mudanças físico-químicas que ocorrem na célula sob desidratação, as condições celulares, que causam alterações no metabolismo, são ainda pouco compreendidas (Lawlor, 2002). Segundo Passioura (1997), nesse estudo das respostas da planta ao déficit hídrico, ainda há muitas dúvidas sobre as vantagens ou desvantagens dessas respostas, porque elas são complexas, abrangendo os níveis da célula, da planta e do dossel no campo e, assim, refletem a integração dos efeitos do estresse e das respostas da planta, sob todos os níveis de organização, no espaço e no tempo. Por isso, a adaptação à seca é considerada uma característica multigênica, de inúmeros caracteres, que são variáveis entre as espécies, e, portanto, de difícil determinação (Blum, 1997). Assim sendo, não basta buscar uma única resposta, e o seu controle genético, para transformar uma planta sensível em uma tolerante à seca, pois não adianta muito se ter a síntese de compostos protetores ao estresse aumentada na planta, se ela possui uma epiderme muito permeável à água, perdendo água facilmente para a atmosfera, ou se ela tem um sistema radicular pouco profundo e ineficiente na captação de água do solo. Por exemplo, quando sob desidratação, mesmo um genótipo de feijão comum, com rápido fechamento estomático como o BAT 117 (Pimentel et al., 1999a, b) tem o seu Ψa foliar abaixado mais rapidamente que um genótipo de feijão caupi, com fechamento estomático mais lento (Figura 14), pois a transpiração cuticular do feijão comum é bem maior que aquela do feijão caupi, que tem uma epiderme mais suberizada. Ainda segundo Passioura (1997), para a maioria das culturas mais estudadas, os cientistas, que tentam obter um aumento de produtividade em cultivo sob sequeiro, ficariam felizes em obter somente um pequeno percentual de aumento de produtividade, nesses ambientes de alta variabilidade de suprimento hídrico.

As características do sistema radicular, quanto à capacidade de obtenção de água, devem ser uma das primeiras informações a serem buscadas, para o estudo da capacidade de uma planta em tolerar a falta de água. Algumas plantas, como o milheto, originário de regiões semi-áridas do oeste africano, e considerado uma das plantas mais tolerantes à seca (Harlan, 1992), é capaz de extrair água das camadas profundas do solo, sem apresentar outras características de tolerância muito desenvolvidas.

146

CARLOS PIMENTEL

Ainda sobre a complexidade das mudanças físico-químicas na planta desidratada, somente a nível celular, segundo Bray (2002), 130 genes com potencial função na adaptação à seca, são ativados, interferindo com as funções metabólicas, em Arabdopsis thaliana. Isso sem contar as alterações na morfologia, de raiz e de parte aérea, e na fenologia da planta, que ocorrem sob desidratação. Na célula, as vias de transdução de sinais, que são comuns a diferentes estresses como por frio, osmótico e por falta d’água, envolvem os seus receptores membranares, que podem ser comuns ou não, em seguida os níveis de Ca+2 e as cascatas de fosforilação, com ação das fosfolipses C e D nos fosfolipídeos membranares, para a produção dos mensageiros IP3, PIP2 e PA, ativando vários tipos de cinases, as ativadas por genes (MAPK), as dependentes de Ca+2 (CDPK) e menos dependentes de Ca+2 (SOS), e as histidina cinases. Através dessas vias são ativados canais iônicos, e o ajuste

147

A RELAÇÃO DA PLANTA COM A ÁGUA

Figura 14 • Valores de potencial de água da folha (Ψa) e da condutância estomática (gs), em um genótipo de feijão comum (BAT 117) e dois de feijão caupi (EPACE e Vu 1183)

g s (µ

m ol

m -2

s- 1 )

Ψ h

(M Pa

)

Ψ (MPa)

Tempo (dias)

osmótico; é induzida a produção das proteínas LEAs hidrofílicas, promovendo o reparo dos danos e a estabilidade da cromatina; a produção de poliaminas e outros compostos estabilizadores das macromoléculas; a maior síntese das peroxidases para diminuir o efeito das EAO; o controle da extensibilidade da parede celular, para manter o crescimento; entre outros processos, assim como ativando os genes favoráveis (ZEP, NCED, AAO3 e MCSU, entre outros), ainda pouco conhecidos, através dos fatores de transcrição específicos para a seca (CBF/DRB) melhor conhecidos, promovendo a resposta da célula ao estresse (Xiong et al., 2002). Por isso, justifica-se a afirmação de Passioura (1997) e de Blum (1997) de que pouco se conhece sobre os mecanismos de tolerância à seca e seu caráter multigênico.

6.2 • QUAIS AS RESPOSTAS ADAPTATIVAS À SECA ESTUDAR PARA A ESPÉCIE EM QUESTÃO?

Sob condições de suprimento inadequado de água ou quando a demanda evapotranspiratória é excessiva, se faz necessária a presença de alguma estratégia em condições naturais, para garantir a sobrevivência do vegetal. Por isso, é necessário identificar as características do vegetal em estudo que garantam a sobrevivência em ambientes com deficiência de água, para a sua seleção nos genótipos, a serem usados nos atuais sistemas de produção, com baixo custo tecnológico, sobretudo em clima tropical (Turner, 1986). Algumas dessas características permitem à planta evitar o período seco, encurtando o ciclo, por exemplo; outras características vão maximizar a absorção de água, através de uma alta capacidade do sistema radicular em absorvê-la, ou estão associadas à otimização do uso da água absorvida para a produção de matéria seca; e ainda um terceiro tipo de característica que está relacionada à capacidade do tecido vegetal em tolerar um baixo conteúdo de água, mantendo sua atividade metabólica (Turner & Jones, 1980). Turner (1986), baseado em Kramer (1980), propõe três tipos de respostas adaptativas de plantas sob estresse por deficiência hídrica (contemplando as características citadas acima), a saber: mecanismos de escape, mecanismos de tolerância sob alto conteúdo de água, e mecanismos de tolerância sob baixo conteúdo de água. Já mais recentemente, Subbarao et al. (1995) classificaram os mecanismos de adaptação à seca em três tipos: mecanismos de escape (“scape”), mecanismos de evitamento (“avoidance”) e mecanismos de tolerância à seca propriamente ditos, que também contemplam as mesmas características citadas acima. Os mecanismos de evitamento, segundo

148

CARLOS PIMENTEL

Subbarao et al. (1995), são os mesmos de tolerância sob alto conteúdo em água, segundo Turner (1986). Tendo em vista que, na língua portuguesa, os termos evitamento e escape têm a mesma conotação, optou-se, neste texto, pela classificação de Turner (1986), conforme a Quadro 3.

149

A RELAÇÃO DA PLANTA COM A ÁGUA

Quadro 3 • Mecanismos fisiológicos de adaptação à seca (escape e tolerância), segundo Turner (1986), e que podem ser aditivos

Mecanismos de escape (habilidade da planta de completar o ciclo antes de ocorrer falta d’água severa): Desenvolvimento fenológico rápido (durante o curto período de chuvas) e plasticidade de desenvolvimento (encurtamento ou prolongamento do ciclo, quando ocorre falta d’água).

Mecanismos de tolerância sob alto conteúdo de água [habilidade da planta de manter alta hidratação, quando a precipitação é baixa (Kramer, 1980)]: Fechamento estomático (1ª linha de defesa); enrolamento de folha; mudança no ângulo da folha; aumento da Lp da raiz (atividade das aquaporinas e fluxo apolástico); enraizamento rápido e profundo (sobretudo sob o estresse, com diminuição da expansão celular na folha e aumento da expansão celular da raiz); manutenção da área foliar das folhas-fontes (stay green), na pré e pós floração, com senescência das folhas mais velhas; perfilhamento e florescimento dos perfilhos secundários; remobilização de reservas dos colmos e ramos para os grãos; redução no número e na esterilidade de grãos por panícula; redução do intervalo entre a floração masculina e feminina (no milho); xeromorfismo [epiderme múltipla e, ou esclerosada, cutícula espessa, tricomas, cerosidade, esclerose da exoderme (quando existente) etc.]; aumento da dissipação de fluorescência não-fotoquímica (Qn) e metabolismo CAM.

Mecanismos de tolerância sob baixo conteúdo de água [habilidade da planta de se submeter à baixa hidratação, quando a precipitação é baixa (Kramer, 1980)]: Menor área foliar; acúmulo de carboidratos em raízes; ajustamento de parede e, ou osmótico; capacidade de recuperação na reidratação (inativação dos sistemas enzimáticos e não-degradação); acúmulo de açúcares solúveis e aminoácidos nas folhas (mantendo a estrutura de macromoléculas); transporte de água na raiz via aquaporinas, com redução da Lp da raiz; tolerância protoplasmática (manutenção da integridade membranar e de outras macromoléculas, devido à: composição em fosfolipídeos da membrana, menor atividade de lipases e proteases, maior atividade de peroxidases, e síntese de compostos protetores, como as xantofilas, polióis, ascorbato, tocoferol, pequenas HSP, poliaminas, deidrinas, ácido jasmônico, brassinosteróides e ácido salicílico); anidrobiose (< 23% de água) de sementes, esporos, pólen e liquens (vitrificação do citoplasma: açúcares solúveis substituem a água na estrutura de macromoléculas).

Deve-se ressaltar que as respostas adaptativas à falta de água serão discutidas segundo os três tipos citados, mas isto não quer dizer que uma planta não possa ter os três tipos de mecanismos. Em geral, essas características são aditivas (mais uma vez ressaltando o caráter multigênico da adaptação à deficiência hídrica), pois como foi citado anteriormente não adianta se ter características de tolerância sob baixo conteúdo de água, se a planta não evita a perda de água pela parte aérea, tendo uma alta Lp em folhas (Figura 14).

Porém não basta conhecer os principais mecanismos ou respostas adaptativas existentes entre os vegetais, se deve principalmente buscar quais, dentre as muitas características adaptativas, são utilizadas pela espécie em estudo. Por exemplo, a maioria das leguminosas, à parte o feijão guandu e o amendoim, que fazem o ajustamento osmótico (Subbarao et al., 1995), desenvolve duas principais estratégias de tolerância à seca: o controle estomático (Schulze, 1986) e o desenvolvimento do sistema radicular (McCully, 1995; Guimarães et al., 1996), sem fazer ajuste osmótico. Esses mecanismos se caracterizam como estratégias de tolerância sob alto conteúdo de água, reduzindo a perda de água por transpiração e maximizando a absorção de água sob déficit hídrico, contribuindo, desse modo, para manter um alto conteúdo em água da planta (Turner, 1986; Subbarao et al., 1995). A eficiência de absorção de água pelas raízes depende de sua profundidade, volume, densidade (quantidade de pêlos radiculares), longevidade (Duncan & Baligar, 1991) e de outros atributos, como a condutividade hidráulica (Lp) nos diferentes órgãos da planta (Tyree, 1997). Isso ocorre porque as leguminosas apresentam, em geral (as espécies de Acácias, por exemplo, da região do Sahel africano, têm um sistema radicular bastante profundo), um sistema radicular pivotante pouco desenvolvido (Esau, 1974), e, por isto, são sensíveis à deficiência hídrica. Assim sendo, não adianta avaliar-se a capacidade de ajustamento osmótico na maioria das leguminosas, pois estas não o fazem. Já nas gramíneas, em geral, o sistema radicular é mais profundo e fasciculado (Esau, 1974), e a maioria faz ajustamento osmótico, mas também em maior ou menor intensidade, como por exemplo, ao se comparar a capacidade de ajuste osmótico entre o milho (pouco ajuste) e o trigo ou o sorgo (maior ajuste) (Kramer & Boyer, 1995). Contudo, para complicar mais esses estudos, algumas gramíneas bastante adaptadas à seca, como o milheto, fazem pouco ajuste osmótico, e a principal característica para a sua adaptação à seca é o sistema radicular bastante profundo (Harlan, 1992).

150

CARLOS PIMENTEL

6.3 • PRINCIPAIS RESPOSTAS ADAPTATIVAS PARA A TOLERÂNCIA À SECA

Dentre as inúmeras respostas das plantas à falta de água, algumas são nocivas e outras podem ser consideradas como adaptativas. Seguindo a proposta de classificação destas, feita por Turner (1986), as principais respostas adaptativas de escape à seca são o desenvolvimento fenológico rápido e a plasticidade de desenvolvimento (Quadro 3). As espécies com desenvolvimento fenológico rápido completam o seu ciclo reprodutivo durante o curto período de chuvas das regiões áridas e semi-áridas. Por exemplo, no subsaara africano, ocorrem 300 a 600mm de precipitação anual, que ocorrem num período de 75 a 119 dias, que é a época para o cultivo agrícola (Rockström & Falkenmark, 2000).

No Brasil, um exemplo típico deste desenvolvimento fenológico rápido ocorre com as plantas nativas da caatinga nordestina, onde estas se mantêm em estado vegetativo durante o período seco e, quando ocorrem chuvas, desenvolvem rapidamente suas flores e depois suas sementes, completando seu ciclo reprodutivo num curto espaço de tempo. Estas sementes produzidas durante o período de chuvas ficam no solo até a próxima estação de chuvas, quando germinarão rapidamente, para a instalação da planta, com o sistema radicular o mais profundo possível, para garantir a sobrevivência da espécie durante o próximo período seco, em estado vegetativo. As fases de desenvolvimento mais sensíveis à falta de água, quais sejam, a germinação (Guimarães, 1996), a floração e frutificação (Bascur et al., 1985), só ocorrem durante o período de chuvas, enquanto no período seco estas espécies ficam em estado vegetativo, menos sensível à seca (Pimentel et al, 1999a, b), ou melhor, ainda na forma de sementes, que são mais tolerantes à dessecação (anidrobiose), podendo sobreviver com menos de 10% de água (Hoekstra et al., 2001). Qualquer outro tecido vegetal, na grande maioria das plantas superiores, não sobrevive quando o conteúdo de água é inferior a 75% (Kramer & Boyer, 1995).

Quanto à plasticidade de desenvolvimento, algumas espécies podem encurtar seu ciclo, se ocorrer falta de água, quando ela já tem um certo desenvolvimento vegetativo, que possa garantir a produção de sementes. Outros vegetais como o milheto podem prolongar o ciclo, quando ocorre uma seca terminal, aumentando o número de sementes produzidas. A produção de sementes pelo vegetal, que são tolerantes à dessecação, vai garantir a perpetuação da espécie (“to spread your genes”), que é o objetivo primário de qualquer ser vivo (Darwin, 1998).

151

A RELAÇÃO DA PLANTA COM A ÁGUA

Quanto aos mecanismos de tolerância sob alto conteúdo de água (Quadro 3), o controle estomático é considerado um mecanismo da parte aérea, que tende a favorecer o vegetal, quando o déficit hídrico tem um curto tempo de duração (veranicos). Porém, se o estresse for de longa duração, o fechamento estomático pode causar redução significativa na absorção de CO2 (Farquhar & Sharkey, 1982; Tang et al., 2002) e, conseqüentemente, reduzir drasticamente a produção. Chaves (1991) considera o fechamento estomático como primeira linha de defesa do vegetal para evitar o dessecamento. Contudo, o fechamento estomático causa uma maior redução do fluxo de H2O para fora da folha do que no fluxo de CO2 que chega aos cloroplastos, reduzindo mais a taxa transpiratória que a taxa fotossintética (Nobel, 1999). Os genótipos de uma espécie podem diferir quanto à eficiência no uso da água, e na relação entre a condutância estomática e a capacidade fotossintética, durante o seu desenvolvimento (Osmond et al., 1980). Essas diferenças podem também depender da diferença, entre genótipos, na sensibilidade da condutância foliar ao gradiente de umidade do ar, em torno das folhas (Ehleringer et al., 1991). O comportamento das células-guardas e a abertura estomática são afetados por fatores internos, como o conteúdo de água foliar, a concentração de CO2 interno, e a atividade de reguladores de crescimento, especialmente ABA, auxina e citocinina (Turner, 1986; Kramer & Boyer, 1995). Fatores que adiam a desidratação por reduzir a perda de água, como a redução na condutância estomática e no crescimento foliar, são processos que reduzem também a produtividade (Turner, 1986).

Já para a absorção de água, pode-se dizer que o sistema radicular funciona como um “sensor” da seca no solo (os estômatos, respondendo ao DPV do ar são os sensores da seca no ar), pois, antes que ocorra uma redução do potencial de água na folha, ocorre a indução do fechamento estomático e a inibição do desenvolvimento da área foliar. Esses processos são também controlados pelo ABA, oriundo das raízes, associado ao balanço dos outros fitormônios, que são transportados para a parte aérea, causando redução na transpiração (Davies et al., 1990; Tardieu, 1997). Por exemplo, o acúmulo de ABA na parte aérea induz o fechamento estomático e o acúmulo de citocininas e auxinas, nesta, protege o aparatus fotossintético e a ultraestrutura cloroplástica, diminuindo o efeito da falta de água e permitindo uma recuperação mais rápida, na reidratação (Kramer & Boyer, 1995; Yordanov et al., 2000). Porém, estudos recentes têm mostrado que o ABA é também remobilizado na parte aérea e na folha, sendo direcionado às células-guardas, para induzir o fechamento estomático (Popova et al, 2000). A condutância

152

CARLOS PIMENTEL

estomática de feijão caupi, por exemplo, é muito sensível a pequenas mudanças no conteúdo em água do solo, antes mesmo que ocorram mudanças no conteúdo em água foliar (Ismail et al., 1994).

Porém, não é só o envio de ABA para a parte aérea que vai controlar a transpiração, pois a variação da Lp da raiz e do xilema também controla a abertura estomática (Steudle, 2000; Schroeder et al., 2001). A redução da Lp no apoplasto foliar ativa mecanicamente canais de Ca+2 para dentro da célula, ativando a exportação de ABA (Popova et al., 2000), e inativando as bombas de prótons, e ativa o simporte H+/K+ para dentro, tornando o apoplasto menos ácido, onde os prótons são excluídos do citoplasma para o vacúolo e o K+ é exportado via seus canais para o exterior, causando então o fechamento estomático (Netting, 2000). Já o aumento da Lp da raiz e do xilema, que pode ser variável segundo os genótipos, ocorre pelo aumento do transporte de água apoplástico (Hartung et al., 2002) e, com o dessecamento mais severo, com a ativação das aquaporinas nas raízes, na via transcelular de transporte de água (Javot & Maurel, 2002), que implementarão o fluxo de água para o xilema, o qual terá também sua Lp alterada para facilitar o fluxo de água para a parte aérea (Zwieniecki et al., 2001), visando diminuir os efeitos da seca. Sob condições de dessecação prolongada, a Lp da raiz pode voltar a cair pela diminuição da condutividade da exoderme nas plantas que possuem estas células, para evitar a saída de água da raiz para o solo dessecado (Steudle, 2001).

O crescimento no sistema radicular pode ser mantido sob déficit hídrico moderado (Tardieu, 1997), porém, sob déficit severo, há redução no crescimento radicular do feijoeiro (Guimarães et al., 1996), por exemplo. Este crescimento é sustentado por assimilados provenientes da parte aérea, e com déficit moderado observa-se um aumento na relação raiz/parte aérea, em plantas perenes (Hsiao & Acevedo, 1974). Isso ocorre porque o déficit hídrico, pouco severo, afeta mais o crescimento da parte aérea que a fotossíntese, aumentando assim a disponibilidade de assimilados para as raízes (Hsiao & Acevedo, 1974). Durante a desidratação, a expansão celular da raiz pode se manter, pois o ABA, que foi acumulado na raiz, impede a produção de etileno nesta (Sharp & LeNoble, 2002), alterando a elasticidade de parede das células da raiz, permitido o crescimento radicular (Hsiao & Xu, 2000). Porém, o aumento desta relação tem um custo respiratório, podendo reduzir a eficiência do uso de água (Passioura, 1986). O acúmulo de substâncias protetoras, como as poliaminas e proteínas LEAs, auxiliam na manutenção do crescimento celular (Xiong et al., 2002).

153

A RELAÇÃO DA PLANTA COM A ÁGUA

Além dos mecanismos citados acima, existem outros mecanismos de tolerância sob alto conteúdo de água, como as mudanças na orientação da área foliar, estando perpendicular aos raios solares pela manhã e paralela a estes, ao meio-dia. Isto aumenta a interceptação da luz pelo amanhecer e no final da tarde, e reduz o tempo de exposição, ao meio-dia, de plantas de feijão comum (Hsiao, 1990), por exemplo. As diferentes cultivares de feijoeiro comum podem apresentar diferentes temperaturas foliares, sob mesmas condições de campo ou casa de vegetação, em virtude dos diferentes tamanhos de folha, orientações, e taxa de transpiração por unidade de área foliares (Comstock & Ehleringer, 1993). Em gramíneas, o enrolamento de folhas diminui a superfície de transpiração, diminuindo as perdas de água (Teare & Peet, 1983), e pode ser um indicador da necessidade de irrigação. Isto ocorre porque estas espécies apresentam um sistema condutor foliar paralelinérveo (Esau, 1974), e o dessecamento dos bordos da folha, provoca o enrolamento desta.

A manutenção da área foliar das folhas-fontes na pré e pós-floração (com o gene stay green), que são aquelas próximas ao dreno colhido (Wardlaw, 1990), em detrimento das outras folhas, permite manter a atividade fotossintética dessas folhas, que são as principais responsáveis pelo enchimento do dreno, o que é também considerado uma resposta adaptativa sob alto conteúdo de água (Bruce et al., 2000). Em gramíneas, a indução do perfilhamento secundário, como ocorre no milheto, é outro mecanismo de tolerância, pois cada inflorescência terá um momento diferente de fecundação, aumentando as chances de produzir algumas panículas viáveis (Payne, 2000; Winkel et al., 2001). Se o milho tivesse essa característica de perfilhar, como seu ancestral, o teosinto (Harlan, 1992), poderia ser uma planta mais adaptada à seca, porém essa característica impediria a colheita mecanizada e, por isto, foi sempre uma característica indesejável para o melhoramento vegetal feito, principalmente nas décadas de 50 e 60, com a chamada revolução verde. Segundo Araus et al. (2002), o aumento da produtividade na segunda metade do século passado, principalmente após a década 70, decorreu da introdução do gene de nanismo (dwarf gene), o que é favorável para a agricultura em áreas marginais, e pelo maior índice de colheita (IC), o que causou aumento de rendimento em áreas favoráveis à agricultura, mas muito pouco em áreas marginais.

Uma característica desejável, principalmente em áreas marginais, é a prolificidade do milho (Mock & Pearce, 1975), produzindo várias espigas no único colmo, característica desejável para a adaptação à falta de água, que não afeta a colheita mecanizada; outra é a capacidade de remobilizar as reservas de

154

CARLOS PIMENTEL

carbono (amido e açúcares solúveis) acumuladas nos colmos e ramos, para os órgãos reprodutivos. Em gramíneas, a bainha da folha é considerada um órgão de reserva, para posterior retranslocação para o grão (Warlaw, 1990). Vale ressaltar que pouco carbono, acumulado durante a fase vegetativa, pode ser remobilizado para o grão, pois este fica nos órgãos vegetativos, na forma de celulose, que não é degradada pelos vegetais superiores. A maior parte do carbono, encontrado no órgão colhido, é oriundo da fotossíntese ocorrida durante a formação e enchimento do órgão (Leegood, 1996). Contudo, algumas espécies originárias de regiões áridas, como o milheto, mantêm o crescimento após a floração, e fazem uma grande remobilização de reservas do colmo para os grãos, quando ocorre um estresse terminal (Maiti & Bidinger, 1981).

Em milho, algumas outras características, específicas para a planta, são buscadas pelo melhoramento vegetal, mesmo naquele realizado pelas grandes empresas produtoras de sementes dos Estados Unidos, que são a diminuição do intervalo entre a floração masculina e feminina, aumentando a polinização das flores femininas, e a redução no número e na esterilidade de grãos por panícula, que implementam a produtividade da planta (Bruce et al., 2000).

As características xeromórficas de algumas espécies (Figura 7), de regiões áridas ou semi-áridas, são consideradas também como um mecanismo de tolerância à seca, sob alto conteúdo de água (Turner, 1986), pois as xerófitas são plantas, expostas às condições de suprimento deficiente de água (Maximov, 1929). A maioria das plantas cultivadas é chamada de mesófita, pois necessitam de grande disponibilidade de água, e aquelas que se desenvolvem em ambientes áridos são chamadas de xerófitas, apresentando algumas características específicas, para evitar a perda de água (Milburn, 1979). Essas características xeromórficas podem ser uma elevada relação volume-superfície, isto é, as folhas são pequenas e compactas, com mesófilo espesso, com o parênquima paliçádico mais desenvolvido que o lacunoso, cujas células têm grandes vacúolos para armazenar água, pequeno volume de espaço intercelular, rede vascular compacta e, algumas vezes, com células pequenas (Esau, 1974). Outras características xeromórficas são: existência de uma hipoderme [tecido com poucos cloroplastos ou desprovido deles, segundo Esau (1974)], também chamada de epiderme múltipla (três camadas em Nerium oleander, Figura 6), principalmente na epiderme superior; e estômatos em depressões, que são características que podem reduzir a perda de água pelas plantas (Raven et al., 2001). Além disso, há a cutícula, que é uma camada maior ou menor segundo as espécies, formada de material graxo, a

155

A RELAÇÃO DA PLANTA COM A ÁGUA

cutina, pouco permeável à água na parede externa da epiderme, cuja principal função é minimizar as perdas de água da folha (Figura 4), quando os estômatos estão fechados (Chamel et al., 1991). Na epiderme de plantas xeromórficas podem ocorrer também pêlos, chamados de tricomas (Figura 5), que podem ter uma função de diminuir o aquecimento da folha e a evaporação da água, refletindo a luz incidente sobre a folha e criando uma camada-limite menos permeável à água (Poljakoff-Mayber & Lerner, 1994).

Segundo Maximov (1929), as plantas xerófitas podem ser agrupadas em: suculentas, como os cactos, que tem um sistema radicular superficial, mas com capacidade de estocar água nos tecidos, suficiente para se manter por meses ou anos sem reposição; efêmeras de deserto, que germinam e completam o ciclo durante o curto período de chuvas, um mecanismo de escape; e as “verdadeiras” xerófitas. Ainda segundo este autor, as xerófitas “verdadeiras” podem possuir: órgãos subterrâneos de reserva (tubérculos, bulbos e outras estruturas subterrâneas de reserva de carboidratos e de água, como o umbuzeiro no Nordeste brasileiro); sistema radicular muitas vezes maior, em volume, que a parte aérea, absorvendo água de grandes profundidades; folhas estreitas e espessas; epiderme e cutícula também espessas; estômatos em depressões; deposição de cera na superfície da folha, tornando-a fosca, refletindo mais a luz; e são plantas com capacidade de manter alta pressão osmótica nos tecidos e, por isto, com grande poder de sucção da água do solo, pois nos desertos, freqüentemente, a solução do solo contém alta concentração de sais.

Quanto às vias fotossintéticas, dentre os três tipos de metabolismo fotossintético de plantas, as plantas C3, C4 e CAM, somente as plantas CAM podem ser consideradas como mais adaptadas à seca, sendo o metabolismo CAM considerado, portanto, um mecanismo de tolerância sob alto conteúdo em água (Osmond & Holtum, 1981). Isto não pode ser dito das plantas C4 que, apesar de serem mais eficientes no uso de água, nem sempre são mais adaptadas à seca. Por exemplo, o milho e a cana-de-açúcar, duas plantas C4, são menos tolerantes à seca que o trigo, o feijão guandu ou o amendoim, que são plantas C3. Algumas plantas C4 são bastante tolerantes à deficiência hídrica, como o sorgo e o milheto, mas não se pode generalizar que as plantas C4 sejam mais adaptadas à falta de água que as