Download Fourier Transforms: Definition, Applications, and Properties and more Slides Electrical Engineering in PDF only on Docsity! Fourier Transform and its applications Docsity.com Fourier Transforms are used in • X-ray diffraction • Electron microscopy (and diffraction) • NMR spectroscopy • IR spectroscopy • Fluorescence spectroscopy • Image processing • etc. etc. etc. etc. Docsity.com Fourier Transforms • Different representation of a function – time vs. frequency – position (meters) vs. inverse wavelength • In our case: – electron density vs. diffraction pattern Docsity.com What is a Fourier transform? • A function can be described by a summation of waves with different amplitudes and phases. Docsity.com Docsity.com Discrete Fourier Transforms • Function sampled at N discrete points – sampling at evenly spaced intervals – Fourier transform estimated at discrete values: – e.g. Images • Almost the same symmetry properties as the continuous Fourier transform ,...3,2,1,0,1,2,3..., )( −−−= ∆= n nhhn ∆ = N nfn2 ,..., 2 NNn −= Docsity.com DFT formulas [ ] [ ] [ ]Niknh tifhdttifthfH N k k nn N k knn /2exp 2exp2exp)()( 1 0 1 0 π ππ ∑ ∑∫ − = − = ∞ ∞− ∆= ∆≈= [ ]∑ − = ≡ 1 0 /2exp N k kn NiknhH π nn HfH ∆≈)( [ ]∑ − = −= 1 0 /2exp1 N n nk NiknHN h π Docsity.com Examples Docsity.com
2 Oe
ee
2 ae.
ee
2 a ee
oe
2 oe
oe
. Re
ee
Docsity.com
Docsity.com
*
*
re
% 5 ahs
905 . at
%s ae. e's
et tS £8 = *.
% 4 as, ?%s
4 25 "Fi at
od
os
Docsity.com
Docsity.com Docsity.com Docsity.com Docsity.com Docsity.com Docsity.com Docsity.com Properties of Fourier Transforms • Convolution Theorem • Correlation Theorem • Wiener-Khinchin Theorem (autocorrelation) • Parseval’s Theorem Docsity.com Convolution
As a mathematical formula:
Clu) = f(x)@ g(x) = ff(x)g(u - x)dx
space
= g(x)@f(x)= fg(x)f(u-x)dx
space
Convolutions are commutative:
f(x) @ g(x) = g(x) @f(x)
® Docsity.com
Convolution illustrated
Yi
¥ [lu]
¥I
a ee a a eo
Intensity
o § 8 &
é
h
~—
Intensity
2.8 & 8
ribet
ide: ¢
Una aed ote a4 6
1a
1
a
a4 6 batter tea
Lu hr lu
® Docsity.com
Convolution Theorem •The Fourier transform of a convolution is the product of the Fourier transforms •The Fourier transform of a product is the convolution of the Fourier transforms Docsity.com Special Convolutions Convolution with a Gauss function Gauss function: Fourier transform of a Gauss function: Docsity.com • Structure factor: ∑ = ⋅= n j jj if 1 ]2exp[)( SrSF π Docsity.com Correlation Theorem
fog= ie) g(x +u)dx; substitute x'=x+u
oo
= ftv —u) g(x" )dx' y
= [£(x-w)a(ndetr NY
oo
T(fog)=F* G
Docsity.com
Docsity.com Calculation of the electron density [ ]∑ ⋅= j jj if SrSF π2exp)( [ ]dvi cell j∫ ⋅= SrrSF πρ 2exp)()( x,y and z are fractional coordinates in the unit cell 0 < x < 1 Docsity.com Calculation of the electron density [ ]∫ ∫ ∫ = = = ++= 1 0 1 0 1 0 )(2exp)()( x y z dxdydzlzkyhxixyzVhkl πρF [ ]dvi cell j∫ ⋅= SrrSF πρ 2exp)()( dxdydzVdv ⋅= yzklhx zyxzyx ++= ⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅+⋅=⋅ ScSbSaScbaSr )( Docsity.com Calculation of the electron density [ ]∫ ∫ ∫ = = = ++= 1 0 1 0 1 0 )(2exp)()( x y z dxdydzlzkyhxixyzVhkl πρF [ ])(2exp)(1)( lzkyhxihkl V xyz h k l ++−= ∑∑∑ πρ F This describes F(S), but we want the electron density We need Fourier transformation!!!!! F(hkl) is the Fourier transform of the electron density But the reverse is also true: Docsity.com