Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Chapter 02-Electrical Circuit Analysis-Problem Solutions, Exercises of Electrical Circuit Analysis

This is solution to problems related Electrical Circuit Analysis course. It was given by Prof. Gurnam Kanth at Punjab Engineering College. Its main points are: KCL, Solution, Node, KVL, Branch, Voltages, Mesh, Coulombs, Current, Charge, Flow

Typology: Exercises

2011/2012
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 07/20/2012

anumati
anumati 🇮🇳

4.4

(99)

110 documents

1 / 7

Toggle sidebar
Discount

On special offer

Related documents


Partial preview of the text

Download Chapter 02-Electrical Circuit Analysis-Problem Solutions and more Exercises Electrical Circuit Analysis in PDF only on Docsity! Chapter 2, Problem 1. The voltage across a 5-kΩ resistor is 16 V. Find the current through the resistor. Chapter 2, Solution 1 v = iR i = v/R = (16/5) mA = 3.2 mA Chapter 2, Problem 2. Find the hot resistance of a lightbulb rated 60 W, 120 V. Chapter 2, Solution 2 p = v2/R → R = v2/p = 14400/60 = 240 ohms Chapter 2, Problem 3. A bar of silicon is 4 cm long with a circular cross section. If the resistance of the bar is 240 Ω at room temperature, what is the cross-sectional radius of the bar? Chapter 2, Solution 3 For silicon, 26.4 10xρ = Ω-m. 2A rπ= . Hence, 2 2 2 2 6.4 10 4 10 0.033953 240 L L L x x xR r A r R x ρ ρ ρ π π π − = = ⎯⎯→ = = = r = 0.1843 m Chapter 2, Problem 4. (a) Calculate current i in Fig. 2.68 when the switch is in position 1. (b) Find the current when the switch is in position 2. Chapter 2, Solution 4 (a) i = 3/100 = 30 mA (b) i = 3/150 = 20 mA docsity.com Chapter 2, Problem 5. For the network graph in Fig. 2.69, find the number of nodes, branches, and loops. Chapter 2, Solution 5 n = 9; l = 7; b = n + l – 1 = 15 Chapter 2, Problem 6. In the network graph shown in Fig. 2.70, determine the number of branches and nodes. Chapter 2, Solution 6 n = 12; l = 8; b = n + l –1 = 19 Chapter 2, Problem 7. Determine the number of branches and nodes in the circuit of Fig. 2.71. Figure 2.71 For Prob. 2.7. 1 Ω 4 Ω + _ 8 Ω 5 Ω 12 V 2 A Chapter 2, Solution 7 6 branches and 4 nodes. docsity.com Chapter 2, Problem 12. In the circuit in Fig. 2.76, obtain v1, v2, and v3. Chapter 2, Solution 12 + V1 - + V2 - + V3 - – 25V + 10V - + 15V - + 20V - LOOP LOOP LOOP For loop 1, -20 -25 +10 + v1 = 0 v1 = 35v For loop 2, -10 +15 -v2 = 0 v2 = 5v For loop 3, -V1 + V2 + V3 = 0 v3 = 30v docsity.com Chapter 2, Problem 13. For the circuit in Fig. 2.77, use KCL to find the branch currents I1 to I4. I1 I2 I4 I3 7 A 2 A 4 A3 A Figure 2.77 Chapter 2, Solution 13 2A I2 7A I4 1 2 3 4 4A I1 3A I3 At node 2, 3 7 0 102 2+ + = ⎯ →⎯ = −I I A 12 2 A 2 5 A At node 1, I I I I A1 2 1 22 2+ = ⎯ →⎯ = − = At node 4, 2 4 2 44 4= + ⎯ →⎯ = − = −I I At node 3, 7 7 4 3 3+ = ⎯ →⎯ = − =I I I Hence, I A I A I A I1 2 3 412 10 5 2= = − = A= −, , , docsity.com Chapter 2, Problem 14. Given the circuit in Fig. 2.78, use KVL to find the branch voltages V1 to V4. V2 V4 V1 V3 3 V 4 V 5 V + – – – + + – – 2 V + + ++ – – + – Figure 2.78 Chapter 2, Solution 14 + + - 3V V1 I4 V2 - I3 - + 2V - + - + V3 - + + 4V I2 - I1 + - V4 5V For mesh 1, − + + = ⎯ →⎯ =V V4 42 5 0 7 V 11 8 For mesh 2, + + + = ⎯ →⎯ = − − = −4 0 4 73 4 3V V V V For mesh 3, − + − = ⎯ →⎯ = + = −3 0 31 3 1 3V V V V V For mesh 4, − − − = ⎯ →⎯ = − − =V V V V V1 2 2 12 0 2 6 Thus, V V V V V V V1 2 3 48 6 11= − = = − V7=, , , docsity.com