Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Homework 3 Solutions | Applied Regression Analysis | STAT 333, Assignments of Statistics

Material Type: Assignment; Class: Applied Regression Analysis; Subject: STATISTICS; University: University of Wisconsin - Madison; Term: Spring 2004;

Typology: Assignments

Pre 2010

Uploaded on 09/02/2009

koofers-user-7bj
koofers-user-7bj 🇺🇸

10 documents

1 / 3

Toggle sidebar

Related documents


Partial preview of the text

Download Homework 3 Solutions | Applied Regression Analysis | STAT 333 and more Assignments Statistics in PDF only on Docsity! Stat 333 Spring 2004 2/27/2004 Homework 3 Solution 1. a. (yield)i = β0 + β1(rain)i + i. Y =  60 50 70 70 80 50 60 40  X =  1 8 1 10 1 11 1 10 1 9 1 9 1 12 1 11  Then X′Y = [ 480 4780 ] X′X = [ 8 80 80 812 ] (X′X)−1 = [ 203/24 −5/6 −5/6 1/12 ] ( or = [ 8.49 −0.83 −0.83 0.08 ]) β̂ = (X′X)−1X′Y = [ 76.67 −1.67 ] b. (yield)i = β0 + β1(rain)i + β2(temp)i + i. Y =  60 50 70 70 80 50 60 40  X =  1 8 56 1 10 47 1 11 53 1 10 53 1 9 56 1 9 47 1 12 44 1 11 44  Then X′Y =  4804780 24360  X′X =  8 80 40080 812 3970 400 3970 20180  (X′X)−1 =  10421/168 −55/21 −5/7−55/21 1/7 1/42 −5/7 1/42 1/105  or =  62.03 −2.62 −0.71−2.62 0.14 0.02 −0.71 0.03 0.01  β̂ = (X′X)−1X′Y =  −144.765.71 2.95  Homework 3 Solution 1 Ting-Li Lin Stat 333 Spring 2004 2/27/2004 2. a. (distance)i = β0 + β1(height)i + i. Y =  253 337 395 451 495 534 573  X =  1 100 1 200 1 300 1 450 1 600 1 800 1 1000  Then X′Y = [ 3038 1711350 ] X′X = [ 7 3450 3450 2342500 ] (X′X)−1 = [ 0.521 −7.675× 10−4 −7.675× 10−4 1.557× 10−6 ] β̂ = (X′X)−1X′Y = [ 269.71 0.33 ] b. (distance)i = β0 + β1(height)i + β2(height)2i + i. Y =  253 337 395 451 495 534 573  X =  1 100 10000 1 200 40000 1 300 90000 1 450 202500 1 600 360000 1 800 640000 1 1000 1000000  Then X′Y =  30381711350 1235847500  X′X =  7 3450 23425003450 2342500 1855125000 2342500 1855125000 1590006250000  (X′X)−1 =  1.510 −6.080× 10−3 4.869× 10−6−6.080× 10−3 3.010× 10−5 −2.616× 10−8 4.869× 10−3 −2.616× 10−8 2.397× 10−11  β̂ = (X′X)−1X′Y =  199.910.708 −0.000343  Homework 3 Solution 2 Ting-Li Lin