Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Interpreting Multinomial Logistic Regression Results: Sociology Example, Study notes of Sociology

An example of interpreting multinomial logistic regression results using stata software and the 1991 general social survey dataset. Interpreting coefficients, odds ratios, and probability computations for a sociology study focusing on the relationship between years of schooling and occupation categories.

Typology: Study notes

2011/2012

Uploaded on 11/20/2012

shubnam
shubnam 🇮🇳

4.5

(6)

133 documents

1 / 5

Toggle sidebar

Related documents


Partial preview of the text

Download Interpreting Multinomial Logistic Regression Results: Sociology Example and more Study notes Sociology in PDF only on Docsity! Sociology multinomial logit • interpreting multinomial logistic regressions; • recovering equations/comparisons not estimated • probability computations The data for this exercise comes for the 1991 General Social Survey. The categorical dependent variable occ is coded as follows: occ=0 if a workers occupation is laborer, operative or craft; occ=1 if occupation is clerical, sales, or service; occ=2 if occupation is managerial, technical, or professional. The independent variables are : educ is years of schooling; age is age in years; sexx is coded 1 male, 0 female; rural is coded 1 if grew up in rural area, 0 otherwise. 1. tab occ occ | Freq. Percent Cum. ------------+----------------------------------- 0 | 172 27.17 27.17 1 | 248 39.18 66.35 2 | 213 33.65 100.00 ------------+----------------------------------- Total | 633 100.00 Let’s begin with the null model with no regressors: 2. mlogit occ,base(0) Iteration 0: log likelihood = -688.49317 Multinomial regression Number of obs = 633 LR chi2(0) = 0.00 Prob > chi2 = . Log likelihood = -688.49317 Pseudo R2 = 0.0000 ------------------------------------------------------------------------------ occ | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- 1 | _cons | .3659343 .0992281 3.688 0.000 .1714508 .5604177 ---------+-------------------------------------------------------------------- 2 | _cons | .2137977 .1025124 2.086 0.037 .0128771 .4147183 ------------------------------------------------------------------------------ (Outcome occ==0 is the comparison group) The coefficients above are on the logodds scale. In particular, they are the log odds of being in occupation 1 versus 0 and 2 versus 0. Hence, they should equal the following: and the same for category 2: ln(231/172)=.2137977. docsity.com Now let’s add education to the model: 3. mlogit occ educ,base(0) Iteration 0: log likelihood = -688.49317 Iteration 1: log likelihood = -578.97699 Iteration 2: log likelihood = -568.79391 Iteration 3: log likelihood = -568.46166 Iteration 4: log likelihood = -568.4611 Multinomial regression Number of obs = 633 LR chi2(2) = 240.06 Prob > chi2 = 0.0000 Log likelihood = -568.4611 Pseudo R2 = 0.1743 ------------------------------------------------------------------------------ occ | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- 1 | educ | .2175129 .0495753 4.388 0.000 .120347 .3146788 _cons | -2.341483 .6221847 -3.763 0.000 -3.560943 -1.122024 ---------+-------------------------------------------------------------------- 2 | educ | .7404903 .0630034 11.753 0.000 .6170059 .8639747 _cons | -9.937645 .8608307 -11.544 0.000 -11.62484 -8.250448 ------------------------------------------------------------------------------ (Outcome occ==0 is the comparison group) To get the coefficients on the odds ratio scale we just add the option ,rrr like so: 4. mlogit occ educ,base(0) rrr Iteration 0: log likelihood = -688.49317 Iteration 1: log likelihood = -578.97699 Iteration 2: log likelihood = -568.79391 Iteration 3: log likelihood = -568.46166 Iteration 4: log likelihood = -568.4611 Multinomial regression Number of obs = 633 LR chi2(2) = 240.06 Prob > chi2 = 0.0000 Log likelihood = -568.4611 Pseudo R2 = 0.1743 ------------------------------------------------------------------------------ occ | RRR Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- 1 | educ | 1.242981 .0616212 4.388 0.000 1.127888 1.369819 ---------+-------------------------------------------------------------------- 2 | educ | 2.096963 .1321158 11.753 0.000 1.853371 2.372572 ------------------------------------------------------------------------------ (Outcome occ==0 is the comparison group) docsity.com