Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Probapility cheet sheet, Cheat Sheet of Mathematics

Probalility definitions, random variable, different types of distributions

Typology: Cheat Sheet

2019/2020

Uploaded on 10/25/2021

saikrishna-kopparapu
saikrishna-kopparapu 🇮🇳

1 document

Partial preview of the text

Download Probapility cheet sheet and more Cheat Sheet Mathematics in PDF only on Docsity! e ia called mutually CLclusive oy, 1 Ms L nrg if they can never NAPPEN Simultaneously Mr ony kb i; AORS g. — * x A coll llection of events ig hale lo be CX haw f if a atleast One of the Coll Han re 2are to i occur in every performan eo sondom <xperim ent te Collec tian Say KET GY I& exhaw re pan, raha sS KEL t the Car rei Pong d *) 0 <P) <) 4) FO) ~) 2 PCB) 4 Y PC) ~1-pG 9) D Teted Tetal Rokability Troremt ef A, } Ar, Re; ahs VAR Ore Palrwive mu hua lly Cv clusive event , thin probabj lity of- weg. POA tA at = £9) = POY) 4 Pr ee) 4 Xlo racic def ™ Pr APR it called Probability fu } thy UNnigud Numbers PAH) Conespondsng to any event AEG Wy called thy probobility of the event A if tho fellow ing Axioms axe Soka fed: Anion) > Pin>o Ly any event AEA AxiornGi POPS) A xiore Gi) Ai pfy>.--,4 . be courtebly infta’ le No: of palvwise miially' 2 e xclulive evente yes MAHA Perit) AME D How PORTA ois wc ddligset -) =P) + Play )+--- On) (& ADR I Sobabi lity Space Deductions DPMAIPY 2) P(W=0 DrPH y AACE > pC <P? . S) FO+@) = PO)+PLD — PUP BD E) Leduction of clos tical def” 7 Continuity theorem rot Probab irhy o~ At IF Fan} be ~ mrnalate Sequence ob evenig , thon p(Lim An) = Lim PAn) y indepen dort: Lee sal } viv! a ee said to be ml tually independe nt fy p9D = = PAD VEO =P PO pte) PCW r(P= vy prc) = P00) UD PCS Nett a tually in dypendnie => Fatouoise dndipen der t. = py G24 Converse 76 net true Sandown vasioblee Arval yalued Linction XS POR Ke colled a random - voriable if for every seal number x the set fees: t= <K (8) EX GEA aes ds anevent: Samp/e Point in’. Speetsum of the Sandom Variable X2 XD: Te range of the Sondom jontobole x Fe cabbd the Jpecluum of X. : ae let ve lists ibu fon finebi on dor om Vaviokle " ROD PCwbexex) Vr er. X Trany Neal numbes. F, Rs To, | Broperticss 2 ¢ x Pa monotony ne reatin g £ 3) PlaexeL). Fy lb) ~ Fy fa) 0 Sab cori fates pi 5) Left cont » x @)-~ foo. plx=a) 6) Ke) =4, Reso Vigne Set of Prins of clitconts atmost countably. 2) Fy Can have On] n chon ‘ nuity of iy y pump discontiny py (no dis Continuihieg of urd Kind) | a OO Discutt ¢ Cases _ a . ) Spectr of X= x) =n : (az +/ ¢tlp ‘ “4 9) } {robobili om Mass Fanction p (Perm. f Je oh By (x) = pn P=) , fy 1 € [pecrum of y eliewhere. * IPG. 4 LESpectru mX * £@) >So VxE Spe clrum xX OR) f@so ver PRPC eX 2s SPO) [ * ELpectyum | = > f OD and Xt ex Y Plcxch) =~ > Lx ‘ Oe Heb i ate 5) At “A non- Secteur point “a” J PUza)= a 6) Foy uw C Spectrum x PO: x) = f (x) =f} = F,Ca)- 5a? Jump at point % eee ee ettgpeec ee Re. ee ea ee Som edn ostant Contnunut chistyib butiong 4) Untfornn Diststh button s- Xv Unifirm (a,b) Spee vu or ~ (4,4) £, (x) ~ a # O2reu, = 0 , eltewhore X~) Nm, ) (mes Fedametorg, o>o) Spectrum of x = Ce .0) e x Oe) = owt lo Po MY eK 3 Standerd Normal dittributiont 7 xn No, ) - 6 } ar | five Ale) = ae pO Meee vi 5) = 6O) ey Bat. t) Conchy ¢ distribution 5 woe (anchy (A,4) , Avo GU a wo A Poramerty , a. f@ a ae 7 ~ 6 OU 2x5 5) Gamma distributions Xn 32) Z Loo = O - elsewbe re. 6) ‘Noha Kota distribution of oe Kind x Bilt)» L map £-) - LG) » ~ 7 oD aM Gaal, Orig 9 ? elewhore » Leta Za distrlbution of Qf, fe Coe Ln >O fi Gero d By Fass ae y OLA ER » €ltevbore . Visson distribution a *A Lom? ly of Sanden variables x (we te T4 which dtpends porametrically or Hme t i Called a sto chaste PHO cose. Vef” No-af- ch - . 7 On Fd Of Stocay tie proces ma Given interval Lobe fying belo tro Lows fe Hows portren dist vibutfen . 4) Te noo chanye dlusing the Hime intral CH tth) indbpendont of no-af changy sccured in (ot) , Lr all + § ACO & Ws l)% Probab} lid of exactly and change ny C4t4b) 1 Piven by dh+ oth) whove ol ig A +e constant € ofh) th a funchorn of. h St LM 55 og L>D GW) Tho Probability of More in C1 44b) 18 Oth), han Ore chong XG): Noof changee in inksvad (2,4) P(OxG) =i) = zee a7 plrohu,.. “a a Ler @ of POISOry Procely Cng ‘moot changes perunit tiny) At Avg noof Changee INO Gilry Hime trterved (0,0 i - Propertiee_ Ob Expeclations p E(a)> Qy A> lonclan! 2) E[a-go)] Sg [9¢x)] 4 > (ony tan] 3) E [9,60 49,0)4-.-4 Intr)) = €(9,Cd)+ € (64) threes +€In(y) 4) le (xJ) < E[ I9cx3/) S) FP 90) 20 jth elgii>o #9 4f IM20 and EL 9OI}~0, tory gen Me; the pry IX) hak a one point abstributh ~ atg (2) 0 Qo oper ties of Vortance $ ——- Va5(x) ~ EL Cx-me 9 4 Var(x)> 0 => X =My , er the whole Probability Mabe ig Concentroded of the moan, ® Ke Quantity LG A>My . 3) Var X)= Car Cx) Wt) gt Ebb-m? > ELy2d “ony Gi) ae Ed x(x-D~ Mx (ny ~) i ~a4 1@ minimuny avhon Bett ye Re ot 5) Var @xtb) = a’ vas (6) srk Ae ~ Standondized Fandom Variables X bea &Vv with mean- Mx Standard oleviatten 760) Tropertiose | 2) ECV=0 2) Voslx* Je 4 2) Ureful for Comparing Af Corent AC vibubeny eee | Momenté =~ D th Order Gntrol moment My= EX Ox-m IG 5 pe 0/12, 08 Mp4, My >4, Aly > oe? 2) sth Srdby Nav Moment H, > EXx™) REE Ko= 4 oy =m, ? 3) yth moment about a Sve point la” G= ELonaty af rt exiet ¥20/1,2 5 > | Moma pl genesatin fnchont i (m-g: f) Pre vided expeetabirs Oy My GQ) = cL etXg in ambh of G4, 4) 4>0_ 1) Mxlo) always eactrts oe 2) My G) may G1) may not exis r 5 ZY MYM) = =F ~E OK) eee De soil ER 4) “ral > ae MCh) ? es +0(-®) Ss) XY ave vue having Of ly Mx (t) ond My Q) ves pect ively. Thy X ¢ Y, | have the Same Probabi I; ty Lit Hribuhen 4 ond anly if MCD = My €) ido FicaLly eeag anol Kastor? . )) 3,5 Meature of ASymaytyy . *t) Hoy +) re Roh Nery van) Shing Odd e@rdhy df 2) I. Meda Of Aint of Gist Yi Ea hitny iy >t ae "fy, = Fo —?