Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A mathematical problem that involves integration, substitution, and vector calculus. The problem includes various equations and expressions, and the goal is to find the values of certain variables or expressions. The document also includes some notes and comments from the solver. This document could be useful for students studying advanced mathematics, particularly calculus and vector calculus.
What you will learn
Typology: Study Guides, Projects, Research
1 / 25
Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH
Question
Number
Scheme Marks
1. (a) C :
2 3 y − 3 y = x + 8
Differentiates implicitly to include either
d
d
y ky x
± or
d 3 d
y
x
±. (Ignore
d
d
y
x
d (^) d d 2 2 3 3 d d d
y (^) y y y x x x x
Correct equation. A
d 2 2 3 3 d
y y x x
A correct (condoning sign error) attempt to
combine or factorise their ‘
d d 2 3 d d
y y y x x
Can be implied.
2 d 3
d 2 3
y x
x y
2 3
x
y −
A1 oe
(b)
3 y = 3 ⇒ 9 − 3(3) = x + 8 Substitutes y = 3 into C. (^) M
3 x = − 8 ⇒ x = − 2 Only x = − (^2) A
d 3(4) d ( 2,3) 4 d 6 3 d
y y
x x
d 4 d
y
x
= from correct working.
Also can be ft using their ‘ x ’ value and y = 3 in the
correct part (a) of
2 d 3
d 2 3
y x
x y
7 marks
1(b) final A1. Note if the candidate inserts their x value and y = 3
into
2 d 3
d 2 3
y x
x y
, then an answer of
d (^2) their , d
y x x
= may indicate a
correct follow through.
Number
Scheme Marks
2. (a) Area( R ) =^
1 2
2 2
0 0
d 3(1 4 ) d (1 4 )
x x x x
− = +
∫ ∫
Integrating
1 2 3(1 4 ) x
−
1 2 ± k (1 + 4 ) x.
1 2
2
1 (^2 )
⎡ (^) + x ⎤ = ⎢ ⎥
⎢⎣ ⎥⎦ Correct integration.
Ignore limits.
1 2
2 3 2 0
= ⎡^ (1 +4 ) x ⎤ ⎣ ⎦
( ) (^ )
3 3 2 2
Substitutes limits of 2 and 0 into a
changed function and subtracts the
correct way round.
9 3 2 2 2
= − = 3 (units) 3 A
(Answer of 3 with no working scores M0A0M0A0.)
(b) Volume
2 2
0
d (1 4 )
x x
∫ (^) ⎝ + ⎠
Use of
2
∫
Can be implied. Ignore limits and d. x
2
0
d 1 4
x x
∫
± k ln 1 + 4 x M
2 9
4 ln 1^ +^4 x A
( ) ( ) ( )
9 9 4 4
Substitutes limits of 2 and 0
and subtracts the correct way round.
dM
So Volume
9
9
9
18
9 marks
Note the answer must be a one term exact
value. Note, also you can ignore
subsequent working here.
Note that
9 = 4 πln 9 + c (oe.) would be awarded the final A0.
Note that ln1 can be implied as equal to 0.
Number
Scheme Marks
3. (a)
2 2 27 x + 32 x + 16 ≡ A (3 x + 2)(1 − x ) + B (1 − x ) + C (3 x + 2) Forming this identity M
Substitutes either 2 3
x = − or x = 1
into their identity or equates 3
terms or substitutes in values to
write down three simultaneous
equations.
2 x = − 3 , ( ) ( )
64 5 20 5 12 − 3 + 16 = 3 B ⇒ 3 = 3 B ⇒ B = 4
x = 1, 27 + 32 + 16 = 25 C ⇒ 75 = 25 C ⇒ C = 3
Both B = 4 and C = (^3) A
( Note the A1 is dependent on
both method marks in this part.)
Equate x
2 :
x A B C
Compares coefficients or
substitutes in a third x -value or
uses simultaneous equations to
show A = 0.
(b) (^2)
f ( ) (3 2) (1 )
x x x
2 1 4(3 x 2) 3(1 x )
− − = + + −
Moving powers to top on any one
of the two expressions
( )
3 2 1 4 2 1 2 x 3(1 x )
− (^) − = ⎡^ + ⎤+ − ⎣ ⎦
( )
3 2 1 1 1 2 x 3(1 x )
− (^) − = + + −
3 3 2 2 2
⎧ (^) x − − x ⎫ = (^) ⎨ + − + + ⎬
⎩ ⎭
Either
3 2
x ± − or
1 ± ( 1)(− − x )from either first or
second expansions respectively
dM1;
Ignoring 1 and 3, any one
correct (^) {..........} expansion.
x x
Both (^) {..........} correct. (^) A
{ } { }
27 2 2 = 1 − 3 x + 4 x + ... + 3 1 + x + x +...
39 2 = 4 + 0 x ;+ 4 x
39 2 4 + (0 ) ; x (^) 4 x A1; A
Number
Scheme Marks
3. (c) (^) 1.08 6.4 16 Actual f (0.2) (6.76)(0.8)
Or
2
Actual f (0.2) (3(0.2) 2) (1 0.2)
Attempt to find the
actual value of f(0.2)
or seeing awrt 4.3 and believing it
is candidate’s actual f(0.2).
Candidates can also attempt to find
the actual value by using
2 (3 2) (3 2) (1 )
x x x
with their A , B and C.
39 2 Estimate f (0.2) 4 4 (0.2)
Attempt to find an estimate for
f(0.2) using their answer to (b)
%age error 100 4.341715976...
their estimate - actual 100 actual
= 1.112095408... = 1.1 % (2sf ) 1.1% A1 cao
14 marks
Number
Scheme Marks
4. (a) d^ 1 = −^2 i^ +^ j^ −^4 k^ ,^ d^ 2 =^ q i^ +^2 j^ +^2 k
As
1 2
q
q
d d
Apply dot product calculation between
two direction vectors, ie.
( 2− × q ) + (1 × 2) + ( 4− × 2)
q
q q
d d (^) Sets d 1 (^) • d 2 = 0
and solves to find q = − 3
A1 cso
(b) Lines meet where:
q
p
λ μ
First two of
q
p
λ μ
λ μ
λ μ
i
j
k
Need to see equations
(1) and (2).
Condone one slip.
(Note that q = − 3 .)
(1) + 2 (2) gives: 15 = 17 + μ ⇒ μ= − 2
Attempts to solve (1) and (2) to find
one of either λ or μ
dM
Any one of λ = 5 or μ= − (^2) A (2) gives: 2 + λ= 11 − 4 ⇒ λ= 5 Both λ= 5 and μ= − (^2) A
(3) ⇒ 17 − 4(5) = p + 2( 2)−
into their k component to give an
equation in p alone.
ddM
⇒ p = 17 − 20 + 4 ⇒ p = 1 p = 1 A1 cso
(c)
2 5 1 or 11 2 2
r r
Substitutes their value of λ or μ into
the correct line l 1 or l 2.
7 or 1, 7, 3
r
Number
Scheme Marks
(d) Let OX = i + 7 j − 3 k
uuur be point of intersection
uuur uuur uuur
Finding vector AX
uuur by finding the
difference between OX
uuur and OA
uuur
. Can
be ft using candidate’s OX
uuur .
uuur uuur uuur uuur uuur
uuur
3 2 their
uuur
dM
Hence,
uuur or OB = − 7 i + 11 j − 19 k
uuur
or − 7 i + 11 j − 19 k
13 marks
Number
Scheme Marks
5. (a) Similar triangles^
r h r h
Uses similar triangles, ratios or
trigonometry to find either one of these
two expressions oe.
(^2 ) 1 2 1 2 4
h h V r h h
Substitutes 2 3
r =^ h into the formula for the
volume of water V.
(b) From the question,
d 8 d
t
d 8 d
t
2 2 d 12 4
d 27 9
V h h
h
2 2 d 12 4 or d 27 9
V h h
h
Candidate’s
d d
d d
t h
2 2
d d d 9 18 8 d d 4
h V V
2 12 8 27
⎛ (^) π h ⎞ ÷ ⎜ ⎟
⎝ ⎠
or (^2 )
8 or 4 π h π h
× oe (^) A
When
d 18 1 12, d 144 8
h h t π π
144 π
or
7 marks
Note the answer must be a one term exact value.
Note, also you can ignore subsequent working after
Number
Scheme Marks
6. (a)
2 tan x d x ∫
2 2 2 2 ⎡ (^) NB : sec A = 1 + tan A gives tan A = sec A − 1 ⎤ ⎣ ⎦
The correct underlined identity. M1 oe
2 = sec x −1 d x ∫
Correct integration
with/without + c
(b) (^3)
ln x d x ∫ x
2 2
d 1 d
d^31 d (^2 )
ln
u x x
v x x (^) x
u x
x v
− −^ − −
Use of ‘integration by parts’ formula
in the correct direction.
2 2
ln. d 2 2
x x x x x
∫
Correct expression. A
2 3
ln d 2 2
x x x x
∫
An attempt to multiply through
n
k
x
, n ∈ , n … 2 by
1 x and an
attempt to ...
… “integrate”(process the result); M
ln 2 2 2
x c x x
correct solution with/without + c A1 oe
[4]
Correct direction means that u =ln x.
Number
Scheme Marks
(c)
3 e d 1 e
x
x
x ∫ +
d d 1 d 1 1 e e , , d d e d 1
x x x
u x x u x u u u
Differentiating to find any one of the
three underlined
2 2
3
e .e ( 1) .e 1 d. d 1 e e
or. d ( 1)
x x x
x x
u x u u
u u u u
∫ ∫
∫
Attempt to substitute for
2 e f ( )
x = u ,
their
d 1
d e
x
x
u
= and 1 e
x u = +
or
3 e f ( )
x = u , their
d 1
d 1
x
u u
and
1 e
x u = +.
2 ( 1) d
u u u
∫
2 ( 1) d
u u u
∫
2 2 1 d
u u u u
∫
u 2 d u u
∫
An attempt to
multiply out their numerator
to give at least three terms
and divide through each term by u (^) dM1*
2
2 ln 2
u = − u + u + c
Correct integration
with/without +c
2 (1 e ) 2(1 e ) ln(1 e ) 2
x x x c
Substitutes 1 e
x u = + back into their
integrated expression with at least
two terms.
dM1*
1 1 2 2 2
e e 2 2e ln(1 e )
x x x x = + + − − + + + c
1 1 2 2 e^2 e^2 2e^ ln(1^ e )
x x x x = + + − − + + + c
1 2 3 2 e^ e^ ln(1^ e ) 2
x x x = − + + − + c
1 2 2 e^ e^ ln(1^ e )
x x x = − + + + k AG
1 2 2 e^ e^ ln(1^ e )
x x x − + + + k
must use a + c and
3 " − 2 "combined. A1 cso
13 marks
Number
Scheme Marks
7. (a) At A ,
2 x = − 1 + 8 = 7 & y = −( 1) = 1 ⇒ A (7,1) A (7,1)^ B
(b)
3 2 x = t − 8 , t y = t ,
d (^2) 3 8 d
x t t
d 2 d
y t t
Their
d d
y t divided by their^
d d
x t M 2
d 2
d 3 8
y t
x t
− (^) Correct
d d
y x A
At A , 2
m( ) 3( 1) 8 3 8 5 5
Substitutes for t to give any of the
four underlined oe:
T : y − (^) ( their 1) = mT (^) ( x −( their 7))
2 14 9 1 = 5 7 + c ⇒ c = 1 − 5 = − 5
Hence
2 9 5 5
T : y = x −
Finding an equation of a tangent
with their point and their tangent
gradient
or finds c and uses
y = (their gradient) x + " " c.
dM
gives T : 2 x − 5 y − 9 = 0 AG 2 x − 5 y − 9 = (^0) A1 cso
(c)
3 2 2( t − 8 ) t − 5 t − 9 = 0
Substitution of both
3 x = t − 8 t and 2 y = t into T
3 2 2 t − 5 t − 16 t − 9 = 0
{ }
2 ( t + 1) (2 t − 7 t − 9) = 0
A realisation that
dM
9 t = −1 (at A ) t = 2 at B
9 t = (^2) A
Candidate uses their value of t to
find either the x or y coordinate
ddM
One of either x or y correct. A
( ) ( )
( )
9 2 9 729 441 2 2 8 8
9 2 81 2 4
8 36 55.125 or awrt 55.
20.25 or awrt 20.
x
y
Both x and y correct. A
Hence (^) ( )
441 81 B (^) 8 , 4 awrt
12 marks
ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.
Oe or equivalent.
Question
Number
Scheme Marks
Aliter
1. (a)
Way 2
2 3 y − 3 y = x + 8
Differentiates implicitly to include either
2 d
d
x kx y
±. (Ignore
d
d
x
y
d 2 d 2 3 3 d d
x x y x y y
Correct equation. A
( )
2 d d
y x
y − = x Applies
( )
d d
d 1
d
y x
x
y
= (^) dM
2 d 3
d 2 3
y x
x y
2 3
x
y −
A1 oe
Aliter
1. (a)
Way 3
2 3 y − 3 y = x + 8
gives
3 2 x = y − 3 y − 8
( )
1 2 3 ⇒ x = y − 3 y − 8
2 1 3 3 f (^ y )^^ f (^ y )
− ′ (^). M ( ) ( )
2 d (^1 ) 3 8 2 3 d 3
x y y y y
− = − − −
Correct differentiation. A
( )
2 2 3
d 2 3
d (^3 3 )
x y
y (^) y y
( )
2 2 3 d^3 3
d 2 3
y^ y^ y
x y
Applies
( )
d d
d 1
d x y
y
x
dM
( )
2 3 3 d^3
d 2 3
y^ x
x y
2 d 3
d 2 3
y x
x y
( )
2 3 3 3
x
y −
or
2 3
x
y −
A1 oe
Question
Number
Scheme Marks
Aliter
2. (a)
Way 2
Area( R ) =
1 2
2 2
0 0
d 3(1 4 ) d (1 4 )
x x x x
− = +
∫ ∫
{Using substitution
d (^1 4) d 4
u u = + x ⇒ (^) x = }
{change limits:
When x = 0 , u = 1 & when x = 2 , u = 9 }
So, Area( R ) =
1 2
9 1 4 1
3 u d u
− ∫
Integrating
1
1 ± k u^2. M
( )
1 2
2
1 2 0
u
Correct integration.
Ignore limits.
1 2
9 3 2 1
= ⎡^ u ⎤ ⎣ ⎦
( ) (^ )
3 3 2 2
Substitutes limits of either
function and subtracts the correct way
round.
9 3 2 = 2 − 2 = 3 (units) 3 A
Aliter
2. (a)
Way 3
Area( R ) =
1 2
2 2
0 0
d 3(1 4 ) d (1 4 )
x x x x
− = +
∫ ∫
{Using substitution (^2) d 1 (^1 4 2) d 4 2 d d
u u = + x ⇒ u (^) x = ⇒ u u = x }
{change limits:
When x = 0 , u = 1 & when x = 2 , u = 3 }
So, Area( R ) =
3 3 3 1 3 2 2 1 1
u u u d^^ = d u ∫ ∫
1
u
Correct integration.
Ignore limits.
( ) ( )
3 3 = 2 (3) − 2 (1)
Substitutes limits of either
function and subtracts the correct way
round.
9 3 2 = 2 − 2 = 3 (units) 3 A
Question
Number
Scheme Marks
Aliter
3. (a)
Way 2
2 2 27 x + 32 x + 16 ≡ A (3 x + 2)(1 − x ) + B (1 − x ) + C (3 x + 2) Forming this identity M
2 terms : 27 3 9 (1)
terms : 32 12 (2)
constants: 16 = 2 4 (3)
x A C
x A B C
equates 3 terms. M
(2) + (3) gives 48 = 3 A + 16 C (4)
(1) + (4) gives 75 = 25 C ⇒ C = 3
(1) gives 27 = − 3 A + 27 ⇒ 0 = − 3 A ⇒ A = 0
(2) gives 32 = − B + 36 ⇒ B = 36 − 32 = 4 Both B = 4 and C = (^3) A
Decide to award B1 for A = (^0) B
3. (a) (^) If the candidate assumes A = 0 and writes the identity 27 x^2^ + 32 x + 16 ≡ B (1 − x ) + C (3 x +2)^2
and goes on to find B = 4 and C = 3 then the candidate is awarded M0M1A0B0.
3. (a) (^) If the candidate has the incorrect identity 27 x^2^ + 32 x + 16 ≡ A (3 x + 2) + B (1 − x ) + C (3 x + 2)^2 and
goes on to find B = 4, C = 3 and A = 0 then the candidate is awarded M0M1A0B1.
3. (a) If the candidate has the incorrect identity 2 2 2 27 x + 32 x + 16 ≡ A (3 x + 2) (1 − x ) + B (1 − x ) + C (3 x + 2) and goes on to find B = 4, C = 3 and
A = 0 then the candidate is awarded M0M1A0B1.
Number
Scheme Marks
Aliter
3. (b)
Way 2
2
f ( ) (3 2) (1 )
x x x
2 1 4(3 x 2) 3(1 x )
− − = + + −
Moving powers to top on any one
of the two expressions
2 1 4(2 3 ) x 3(1 x )
− − = + + −
x x
Either
2 3 (2) ( 2)(2) (3 ) x
− − ± − or
1 ± ( 1)(− − x ) from either first or
second expansions respectively
dM1;
Ignoring 1 and 3, any one
correct (^) {..........} expansion.
x x
Both (^) {..........} correct. (^) A
{ } { }
1 3 27 2 2 = 4 4 − 4 x + 16 x + ... + 3 1 + x + x +...
39 2 = 4 + 0 x ;+ 4 x
39 2 4 + (0 ) ; x (^) 4 x A1; A
Number
Scheme Marks
Aliter
3. (c)
Way 2
Actual f (0.2) (6.76)(0.8)
Attempt to find the
actual value of f(0.2)
39 2 Estimate f (0.2) 4 4 (0.2)
Attempt to find an estimate for f(0.2)
using their answer to (b)
%age error 100 100 4.341715976...
their estimate 100 100 actual
= − 1.112095408... = 1.1 % (2sf ) 1.1% A1 cao
3. (c) Note that:
%age error 100
= 1.0998638... =1.1 % (2sf )
Should be awarded the final marks of
M0A
3. (c) Also note that:
%age error 100 100
= 1.0998638... =1.1 % (2sf )
Should be awarded the final marks of
M0A
…so be wary of 1.0998638…
Question
Number
Scheme Marks
4. (a) −^2 q +^2 −^8 is sufficient for M1.
Aliter
4. (b)
Way 2
Lines meet where:
q
p
First two of
q
p
i
j
k
Need to see equations
(2) and (2).
Condone one slip.
(Note that q = − 3 .)
Attempts to solve (1) and (2) to find
one of either λ or μ
dM
Candidate writes down a correct
equation containing p and one of either
(3) ⇒ 17 − 4(9 + 2( 2))− = p + 2( 2)−
Attempt to substitute their value for
k component to give an equation in
p alone.
ddM
⇒ 17 − 20 = p − 4 ⇒ p = 1 p = 1 A1^ cso
4. (c)
If no working is shown then any two out of the three
coordinates can imply the first M1 mark.
7 or 1, 7, 3
r
Number
Scheme Marks
Aliter
4. (d) (^) Let OX = i + 7 j − 3 k
uuur be point of intersection
Way 2
uuur uuur uuur
Finding the difference between their
uuur (can be implied) and OA
uuur .
uuur M1^ ±
uuur uuur uuur uuur uuur
uuur their OX their AX
uuur uuur
dM
Hence,
uuur or OB = − 7 i + 11 j − 19 k
uuur
or − 7 i + 11 j − 19 k
4. (d)
Way 3
uuur Substitutes their value of λ into the
line l 1.
dM
Hence,
uuur or OB = − 7 i + 11 j − 19 k
uuur
or − 7 i + 11 j − 19 k
Number
Scheme Marks
Aliter
4. (d)
OA = 9 i + 3 j + 13 k
uuur
and the point of intersection OX = i + 7 j − 3 k
uuur
Way 4
9 Minus 8 1
3 Plus 4 7
13 Minus 16 3
Finding the difference
between their OX
uuur (can be
implied) and OA
uuur .
( )
uuur
1 Minus 8 7
7 Plus 4 11
3 Minus 16 19
their OX their AX
uuur uuur
dM1
Hence,
uuur or OB = − 7 i + 11 j − 19 k
uuur
or − 7 i + 11 j − 19 k
Aliter
4. (d)
OA = 9 i + 3 j + 13 k
uuur and OB = a i + b j + c k
uuur
and the point of intersection OX = i + 7 j − 3 k
uuur
Way 5
As X is the midpoint of AB , then
⎛ +^^ a^ +^ b^ + c ⎞ − = ⎜ ⎟ ⎝ ⎠
Writing down any two of
these “equations” correctly.
a
b
c
An attempt to find at least
two of a , b or c.
dM1
Hence,
uuur or OB = − 7 i + 11 j − 19 k
uuur
or − 7 i + 11 j − 19 k
a = − 7, b = 11, c = − 19
Number
Scheme Marks
Aliter
4. (d) Let OX = i + 7 j − 3 k
uuur be point of intersection
Way 6
uuur uuur uuur
and AX = 64 + 16 + 256 = 336 = 4 21
uuur
Finding the difference
between their OX
uuur (can be
implied) and OA
uuur .
uuur
Note AX = 336
uuur would
imply M1.
uuur uuur uuur
Hence BX = AX = 336
uuur uuur gives
2 2 2
Writes distance equation
of
2 BX = 336
uuur where
uuur uuur uuur and
uuur
dM1
2 2 2
2
2
2
uuur
Hence,
uuur or OB = − 7 i + 11 j − 19 k
uuur
or − 7 i + 11 j − 19 k
Question
Number
Scheme Marks
5. (a) Similar shapes^ ⇒^ either
1 2 3 3 3 1 2 3
or (16) 24 24
V h
V h
1 2 3 3 3 1 2 3
or (24) 24
r V h
V h r
Uses similar shapes to find either one of
these two expressions oe.
(^3 3) 4 2048 24 27
h h V
Substitutes their equation to give the
correct formula for the volume
of water V.
5. (a) Candidates simply writing:
V = × π h or
2 (^1 163)
V π h
would be awarded M0A0.
d 8 8 d
V t c t
d 8 d
t
= or V = 8 t B1
1 1 1 1 3 3 3 3 27 27(8 ) 54 2 3 4 4
V t t t h h π π π π
1 1 1 3 3 3 27(8 ) 54 2 or or 3 4
t t t
π π π
2 d 3
d
h k t t
− 1 = ±^ ;^ M1; (^3 2) 3
d 2 1 3 d 3
h t
1 (^3 2) 3
d 2 1 3 d 3
h t
A1 oe
When
3 12 12, 32 3 2
h t
So when 1 2 1 3 3 3
3
d 2 1 2 1 12, d 32 1024 8
h h
Question
Number
Scheme Marks
7. (a)
It is acceptable for a candidate to write x = 7, y = 1, to
gain B1.
Aliter
(c)
Way 2
3 2 x = t − 8 t = t t ( − 8) = t ( y −8)
So,
2 2 2 2 x = t ( y − 8) = y y ( −8)
2 2 2 x − 5 y − 9 = 0 ⇒ 2 x = 5 y + 9 ⇒ 4 x = (5 y +9)
Hence,
2 2 4 y y ( − 8) = (5 y + 9)
Forming an equation in terms of y
only.
2 2 4 ( y y − 16 y + 64) = 25 y + 90 y + 81
3 2 2 4 y − 64 y + 256 y = 25 y + 90 y + 81
3 2 4 y − 89 y + 166 y − 81 = 0
A realisation that
dM1 ( y − 1)( y − 1)(4 y − 81) = 0
Correct factorisation A1
81 y = 4 = 20.25 (or awrt 20.3) Correct y-coordinate (see below!)
2 81 81 2 x = 4 ( 4 − 8)
Candidate uses their y -coordinate
to find their x -coordinate.
ddM1
Decide to award A1 here for
correct y-coordinate.
441 x = 8 = 55.125 (or awrt 55.1) Correct x -coordinate A1
Hence (^) ( )
441 81 B (^) 8 , 4 [6]
Number
Scheme Marks
Aliter
Way 3
t = y
So (^) ( ) ( )
3 x = y − 8 y
2 x − 5 y − 9 = 0 yields
( ) ( )
3 2 y − 16 y − 5 y − 9 = 0
Forming an equation in terms of y
only.
( ) ( )
3 ⇒ 2 y − 5 y − 16 y − 9 = 0
( y^ +^1 ) (^ { 2 y^ −^7 y −^9 )=^0 }
A realisation that
( y^ +^1 )is a factor.^
dM1
( y^ +^1 ) (^ { y^ +^1 )(^2 y −^9 )=^0 } Correct factorisation.^ A1
81 y = 4 = 20.25 (or awrt 20.3) Correct y-coordinate (see below!)
( ) ( )
3 81 81 x = 4 − (^84)
Candidate uses their y -coordinate
to find their x -coordinate.
ddM1
Decide to award A1 here for
correct y-coordinate.
441 8
x = = 55.125 (or awrt 55.1) Correct x -coordinate A1
Hence (^) ( 441 81 ) 8 4