Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

CS 59000: Statistical Machine Learning - Lecture 1 by Alan Qi, Fall 2008 - Prof. Yuan Qi, Study notes of Computer Science

The first lecture slides for cs 59000: statistical machine learning course offered by alan qi at purdue university in fall 2008. The lecture covers the importance of machine learning, applications, and logistics of the course. Students will learn about various topics such as probability distributions, linear regression, bayesian networks, and kernel methods. Prerequisites include calculus, linear algebra, and probability.

Typology: Study notes

Pre 2010

Uploaded on 07/30/2009

koofers-user-fzl
koofers-user-fzl 🇺🇸

10 documents

1 / 23

Toggle sidebar

Related documents


Partial preview of the text

Download CS 59000: Statistical Machine Learning - Lecture 1 by Alan Qi, Fall 2008 - Prof. Yuan Qi and more Study notes Computer Science in PDF only on Docsity! CS 59000 Statistical Machine learning Lecture 1 Why take machine learning Solve problems in computer vision,  natural language processing, systems  biology, social network analysis,  finance, etc. Research in machine learning Find industrial opportunities Other reasons (enjoying learning  elegant theories, doing fun/practical  projects ?) How to label each line of FAQ automatically <head>X-NNTP-Poster: NewsHound v1.33 <head> <head>Archive-name: acorn/fag/part2 <head>Frequency: monthly <head> <question>2.6) What configuration of serial cable should I use <answer> <answer> Here follows a diagram of the necessary connections <answersprograms to work properly. They are as far as I know t <answer>agreed upon by commercial comms software developers fo <answer> <answer> Pins 1, 4, and 8 must be connected together inside <answersis to avoid the well known serial port chip bugs. The How to model social networks and predict your friends’ movie preference? Adam Judah @Pharaoh (time of Moses) Nicodemus ‘Aaron <Rahab Erastus ecarah Noah @liberias dese ( We Somat a! Aristarchus asamuel qilary (mother of Jesus) Stephen @oseph (father ofdesus) »Joses (brother of Jesus) old ee iacah eames (brother otJesusy @MAt en cp eTychictis @v eo: Titus _aFelbc jah @Barnabas oEsall @jsaiah Qn the Baptist o eDemas Silas 2Cain qian (wife of Clopas) v wdaseph Pilate esus lero eS eal Claudius nerew @Herod (Antipas) . Ans = Festus qludas (son of James) in Peter 25l0M PT mothy esimon (ot Cyrene) @ires (son.of Zebedee) ~~ Epaphras @ucss Iscariot @ebedee Annas. @/oseph (of Arimathea) Herodias 9 gApollos ames (son of Alphacus) @ aartha e/onah e ( q ) @farabbas Mary (of Bethany) Q@PHillip tthe apostle) Qe atholomew_caiaphas Priscilla Aquila Thomas@Alphacus (father of James) @ Philip (the evangelist) aMelchizedek Logistics Time:  TR 10:30 am ‐ 11:45 am Instructor: Alan Qi Lawson 1207 • alanqi[at]cs.purdue.edu Teaching assistant: Yao Zhu Lawson B116F • zhu36[at]cs.purdue.edu  Office hours: MW 2:00 pm ‐ 3:15 pm or by appointment  Web page: http://www.cs.purdue.edu/~alanqi/Courses/CS59000.html Workload Homework: 5 to 8 assignments  Midterm in mid October  Review of recent research  Students will choose a subtopic of machine  learning research, select three recent  conference papers on the topic, and write a  2 page report outlining the main ideas of  papers and relate them to the context of the  course. Workload (cont.): Final project • Topic: Anything that is clearly pertains to the course  material.  • Pre‐report: One‐page paragraph description of your  project a month before the project is due.  • Collaboration: You are encouraged to collaborate on the  project. We expect a four page write‐up about the project,  which should clearly and succintly describe the project  goal, methods, and your results. Each group should submit  only one copy of the write‐up and include all the names of  the group members (a two person group will have 6 pages,  a three person group will have 8 pages, and so on).  Grading * Class participation: 10% « Homework: 30% Assignments will be accepted up to 5 days late with a penalty of 10% per day. No assignment will be accepted more than 5 days late. « Midterm: 25% ¢ Paper Review: 10% ¢ Final project: 25% Polynomial Curve Fitting 0 1 x, Ww =wotwyetwor? +...+wyo™ = wa J j=0 Sum-of-Squares Error Function t In Ot Order Polynomial 9 Order Polynomial Over-fitting —6— Training —o— Test Root-Mean-Square (RMS) Error: Erms = \/2E(w*)/N Polynomial Coefficients M=0 M=1 M=3 M=9 wet 019 0.82 0.31 0.35 w* 127 7.99 232.37 ws -25.43 -5321.83 ws 17.37 48568.31 w% -231639.30 wt 640042.26 we -1061800.52 w* 1042400.18 we -557682.99 we 125201.43