Recent questions in Physics of semiconductor devices

No documents found, press Enter to search

schottky diode numerical simulation

i need help to solve this problem %% Counters and Constants k=0; m=0; Ht=4E-13; %% Input Parameters N=19; D1=-2.0; IA=50; VS=zeros(1,19); U=zeros(1,19); H=2.5E-5; eps=9.47E-13; q=1.602E-19; pi=3.1415; T=300; k=1.38E-23; Vt=(k*T)/q; %% Boundary Conditions U1(1)=0.5; U10=0.5; U1(19)=2.5; %% Initial Electron Density An1(1) = 6E14; An(19) = 6E14; An1(19) = 6E14; And = 6E14; for i = 1:19; An(i)=2E15; end %% Elements of Matrix A A=zeros(18,18); for i=1:18; j=i; A(i,j)=-2; end for i=1:18; j=i+1; A(i,j)=1; A(j,i)=1; end Ainv=inv(A); for k=1:145 %% Elements of Matrix C for j=1:19; C(j)=((An(j)-And)/eps)\*H\*H\*q; end C(1)=C(1)-0.5; C(19)=C(19)-2.5; for i=1:19 U1(i)=U1(i)+Ainv(i,j)\*C(j); end %% Electric Field E10=-(3.0*U10+4*U1(1)-U1(2))/(2*H); E1(1)=-(U1(2)-0.5)/(2*H); for j=2:18; E1(j)=-(U1(j+1)-U1(j-1))/(2\*H); end E1(19)=-(3*U1(19)-4*U1(18)+U1(17))/(2*H); C1=sqrt(q/(4*pi*eps)); C2=q*C1; D=abs(E10); %% Depletion Width Vb1=1; Vab=1.5; Vb=abs(Vb1+Vab); W=sqrt((2*eps*Vb)/(q*And)); Deltab=C1*sqrt(D); %% Input Velocity E0=4E+3; S0=8000; Vsa=0.85E+7; Vn0=(S0*abs(E10)+Vsa*(E10/E0)^4)/(1+(E10/E0)^4); for i=1:19; Vn(i)=(S0\*abs(E1(i))+Vsa\*(E1(i)/E0)^4)/(1+(E1(i)/E0)^4); end %% Mobility Sc0=Vn0/abs(E10); for i=1:19; S(i)=Vn(i)/abs(E1(i)); end %% Total Velocity (Drift + Diffusion) Vn10=Vn0-0.5*Sc0*Vt*((11*An(1)+18*An(1)-9*An(2)+2*An(3))/(61*An(1)*H)); Vn1(1)=Vn(1)-0.5*S(1)*Vt*((An(2)-And)/(H*An(1))); for j=2:18 Vn1(j)=Vn(j)-S(j)\*Vt\*((An(j+1)-An(j-1))/(2\*An(j)\*H)); end Vn1(19)=Vn(19)-S(19)+Vt*(3*An(19)-4*An(18)+An(17))/(2*An(19)*Vt*H); %% Currnt Density Test Dif=(fjmax(C2,D)-An(1)*Vn10)*(Ht/H); %% update Electron density An10=An(1)+(fjmax(C,D)-An(1)*Vn10)*(Ht/H); % An1(1)=An(1)+(fjmax(C,D)-An(1)*Vn1(1))*(Ht/H); for i=2:19; An1(i)=An(i)-(An(i)\*Vn1(i)-An(i-1)\*Vn1(i-1))\*(Ht/H); end ​ %% Displacement Current Disp(1)=((U1(2)-U10)-(U(2)-U1(1)))*(1/(H*Ht))*(eps/q); for i=2:18 Disp(i)=((U1(i+1)-U1(i-1))-(U(i+1)-U(i-1)))\*(1/(H\*Ht))\*(eps/q); end Disp(19)=Disp(18); %% PARTICAL CURRENT Vs=zeros(50); for i=1:19 Anvn(i)=0.5\*(An1(i)+An(i))\*(Vn1(i)+Vs(i)); end %% TOTAL CURRENT for i=1:18 Ajt(i)=-0.5\*Anvn(i)+0.5\*Disp(i); end Ajt(19)=Ajt(18); for I=1:19 Ajc(i)=-q\*An1(i)\*Vn1(i); end Ajc(19)=Ajc(18); An0=An10; for i=1:19; An(i)=An1(i) end for i=1:N Vs(i)=Vn1(i) end Vs(19)=Vn1(19); for i=1:N U(i)=U1(i) end U(19)=U1(19); end
0

schottky diode numerical simulation

i need help to solve this problem %% Counters and Constants k=0; m=0; Ht=4E-13; %% Input Parameters N=19; D1=-2.0; IA=50; VS=zeros(1,19); U=zeros(1,19); H=2.5E-5; eps=9.47E-13; q=1.602E-19; pi=3.1415; T=300; k=1.38E-23; Vt=(k*T)/q; %% Boundary Conditions U1(1)=0.5; U10=0.5; U1(19)=2.5; %% Initial Electron Density An1(1) = 6E14; An(19) = 6E14; An1(19) = 6E14; And = 6E14; for i = 1:19; An(i)=2E15; end %% Elements of Matrix A A=zeros(18,18); for i=1:18; j=i; A(i,j)=-2; end for i=1:18; j=i+1; A(i,j)=1; A(j,i)=1; end Ainv=inv(A); for k=1:145 %% Elements of Matrix C for j=1:19; C(j)=((An(j)-And)/eps)\*H\*H\*q; end C(1)=C(1)-0.5; C(19)=C(19)-2.5; for i=1:19 U1(i)=U1(i)+Ainv(i,j)\*C(j); end %% Electric Field E10=-(3.0*U10+4*U1(1)-U1(2))/(2*H); E1(1)=-(U1(2)-0.5)/(2*H); for j=2:18; E1(j)=-(U1(j+1)-U1(j-1))/(2\*H); end E1(19)=-(3*U1(19)-4*U1(18)+U1(17))/(2*H); C1=sqrt(q/(4*pi*eps)); C2=q*C1; D=abs(E10); %% Depletion Width Vb1=1; Vab=1.5; Vb=abs(Vb1+Vab); W=sqrt((2*eps*Vb)/(q*And)); Deltab=C1*sqrt(D); %% Input Velocity E0=4E+3; S0=8000; Vsa=0.85E+7; Vn0=(S0*abs(E10)+Vsa*(E10/E0)^4)/(1+(E10/E0)^4); for i=1:19; Vn(i)=(S0\*abs(E1(i))+Vsa\*(E1(i)/E0)^4)/(1+(E1(i)/E0)^4); end %% Mobility Sc0=Vn0/abs(E10); for i=1:19; S(i)=Vn(i)/abs(E1(i)); end %% Total Velocity (Drift + Diffusion) Vn10=Vn0-0.5*Sc0*Vt*((11*An(1)+18*An(1)-9*An(2)+2*An(3))/(61*An(1)*H)); Vn1(1)=Vn(1)-0.5*S(1)*Vt*((An(2)-And)/(H*An(1))); for j=2:18 Vn1(j)=Vn(j)-S(j)\*Vt\*((An(j+1)-An(j-1))/(2\*An(j)\*H)); end Vn1(19)=Vn(19)-S(19)+Vt*(3*An(19)-4*An(18)+An(17))/(2*An(19)*Vt*H); %% Currnt Density Test Dif=(fjmax(C2,D)-An(1)*Vn10)*(Ht/H); %% update Electron density An10=An(1)+(fjmax(C,D)-An(1)*Vn10)*(Ht/H); % An1(1)=An(1)+(fjmax(C,D)-An(1)*Vn1(1))*(Ht/H); for i=2:19; An1(i)=An(i)-(An(i)\*Vn1(i)-An(i-1)\*Vn1(i-1))\*(Ht/H); end ​ %% Displacement Current Disp(1)=((U1(2)-U10)-(U(2)-U1(1)))*(1/(H*Ht))*(eps/q); for i=2:18 Disp(i)=((U1(i+1)-U1(i-1))-(U(i+1)-U(i-1)))\*(1/(H\*Ht))\*(eps/q); end Disp(19)=Disp(18); %% PARTICAL CURRENT Vs=zeros(50); for i=1:19 Anvn(i)=0.5\*(An1(i)+An(i))\*(Vn1(i)+Vs(i)); end %% TOTAL CURRENT for i=1:18 Ajt(i)=-0.5\*Anvn(i)+0.5\*Disp(i); end Ajt(19)=Ajt(18); for I=1:19 Ajc(i)=-q\*An1(i)\*Vn1(i); end Ajc(19)=Ajc(18); An0=An10; for i=1:19; An(i)=An1(i) end for i=1:N Vs(i)=Vn1(i) end Vs(19)=Vn1(19); for i=1:N U(i)=U1(i) end U(19)=U1(19); end
0

schottky diode numerical simulation

i need help to solve this problem %% Counters and Constants k=0; m=0; Ht=4E-13; %% Input Parameters N=19; D1=-2.0; IA=50; VS=zeros(1,19); U=zeros(1,19); H=2.5E-5; eps=9.47E-13; q=1.602E-19; pi=3.1415; T=300; k=1.38E-23; Vt=(k*T)/q; %% Boundary Conditions U1(1)=0.5; U10=0.5; U1(19)=2.5; %% Initial Electron Density An1(1) = 6E14; An(19) = 6E14; An1(19) = 6E14; And = 6E14; for i = 1:19; An(i)=2E15; end %% Elements of Matrix A A=zeros(18,18); for i=1:18; j=i; A(i,j)=-2; end for i=1:18; j=i+1; A(i,j)=1; A(j,i)=1; end Ainv=inv(A); for k=1:145 %% Elements of Matrix C for j=1:19; C(j)=((An(j)-And)/eps)\*H\*H\*q; end C(1)=C(1)-0.5; C(19)=C(19)-2.5; for i=1:19 U1(i)=U1(i)+Ainv(i,j)\*C(j); end %% Electric Field E10=-(3.0*U10+4*U1(1)-U1(2))/(2*H); E1(1)=-(U1(2)-0.5)/(2*H); for j=2:18; E1(j)=-(U1(j+1)-U1(j-1))/(2\*H); end E1(19)=-(3*U1(19)-4*U1(18)+U1(17))/(2*H); C1=sqrt(q/(4*pi*eps)); C2=q*C1; D=abs(E10); %% Depletion Width Vb1=1; Vab=1.5; Vb=abs(Vb1+Vab); W=sqrt((2*eps*Vb)/(q*And)); Deltab=C1*sqrt(D); %% Input Velocity E0=4E+3; S0=8000; Vsa=0.85E+7; Vn0=(S0*abs(E10)+Vsa*(E10/E0)^4)/(1+(E10/E0)^4); for i=1:19; Vn(i)=(S0\*abs(E1(i))+Vsa\*(E1(i)/E0)^4)/(1+(E1(i)/E0)^4); end %% Mobility Sc0=Vn0/abs(E10); for i=1:19; S(i)=Vn(i)/abs(E1(i)); end %% Total Velocity (Drift + Diffusion) Vn10=Vn0-0.5*Sc0*Vt*((11*An(1)+18*An(1)-9*An(2)+2*An(3))/(61*An(1)*H)); Vn1(1)=Vn(1)-0.5*S(1)*Vt*((An(2)-And)/(H*An(1))); for j=2:18 Vn1(j)=Vn(j)-S(j)\*Vt\*((An(j+1)-An(j-1))/(2\*An(j)\*H)); end Vn1(19)=Vn(19)-S(19)+Vt*(3*An(19)-4*An(18)+An(17))/(2*An(19)*Vt*H); %% Currnt Density Test Dif=(fjmax(C2,D)-An(1)*Vn10)*(Ht/H); %% update Electron density An10=An(1)+(fjmax(C,D)-An(1)*Vn10)*(Ht/H); % An1(1)=An(1)+(fjmax(C,D)-An(1)*Vn1(1))*(Ht/H); for i=2:19; An1(i)=An(i)-(An(i)\*Vn1(i)-An(i-1)\*Vn1(i-1))\*(Ht/H); end ​ %% Displacement Current Disp(1)=((U1(2)-U10)-(U(2)-U1(1)))*(1/(H*Ht))*(eps/q); for i=2:18 Disp(i)=((U1(i+1)-U1(i-1))-(U(i+1)-U(i-1)))\*(1/(H\*Ht))\*(eps/q); end Disp(19)=Disp(18); %% PARTICAL CURRENT Vs=zeros(50); for i=1:19 Anvn(i)=0.5\*(An1(i)+An(i))\*(Vn1(i)+Vs(i)); end %% TOTAL CURRENT for i=1:18 Ajt(i)=-0.5\*Anvn(i)+0.5\*Disp(i); end Ajt(19)=Ajt(18); for I=1:19 Ajc(i)=-q\*An1(i)\*Vn1(i); end Ajc(19)=Ajc(18); An0=An10; for i=1:19; An(i)=An1(i) end for i=1:N Vs(i)=Vn1(i) end Vs(19)=Vn1(19); for i=1:N U(i)=U1(i) end U(19)=U1(19); end
0
Physics of semiconductor devices